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Abstract 

 
Alternative splicing in vertebrate photoreceptors  
and mechanisms underlying retinitis pigmentosa 

 
Jesse Sundar 

RNA binding proteins (RBPs) have emerged as important regulators of gene expression. 
RBPs typically contain RNA binding domains that recognize a specific sequence and/or 
structural motifs within the RNA. This allows them to modulate metabolism of RNAs in several 
possible ways including regulation of alternative splicing and processing, polyadenylation, 
translocation, localization, modification, stability, or translation. Previous studies have shown the 
Musashi (MSI) RBP family to be highly expressed in the retina, and more specifically, 
photoreceptors, but the importance of this expression remains largely unknown. We identified 
the MSI proteins as potential regulators of alternative exon splicing in murine photoreceptors. 
We hypothesized that the MSI proteins are essential splicing factors needed to produce 
photoreceptor-specific transcripts and that inactivation of the Msi genes would lead to 
decreased photoreceptor function and survival subsequent to aberrant splicing. We also 
predicted that the MSI proteins were regulating splicing of transcripts involved in ciliogenesis 
and outer segment morphogenesis.  

To test our hypothesis, I generated Cre-LoxP conditional knockout mice to inactivate the 
Msi genes either in the entire retina and ventral forebrain or specifically rod photoreceptors. I 
found that both rod and cone photoreceptor function was completely absent after pan-retinal 
inactivation of both Msi genes. I also discovered alterations in retinal progenitor cell proliferation 
and decreased retinal cell survival at later ages in the absence of the MSI proteins. When 
analyzing the morphology of the outer segment and connecting cilium in the absence of MSI, I 
found defects only in outer segment morphology. Furthermore, I found that the MSI proteins 
regulate the photoreceptor-specific splicing of several outer segment and cilia-related transcripts 
including Bbs8, Cc2d2a, Cep290, and Prom1. Lastly, we found that deletion of these 
photoreceptor-specific exons in C57BL6/J mice did not significantly affect photoreceptor 
function.  
 I also analyzed mechanisms underlying neurodegeneration in a model of retinitis 
pigmentosa called the retinal degeneration-10 (rd10) mouse model, which harbors a mutation in 
the Pde6b gene. In this model, significant photoreceptor degeneration is observed in mice 
reared under normal light conditions yet rearing these mice in complete darkness significantly 
increases photoreceptor survival. We hypothesized that the phototransduction cascade was 
signaling photoreceptor cell death in rd10 mice. To test the hypothesis, I inactivated either 
transducin or rhodopsin signaling in rd10 mice. I found that inactivating transducin signaling in 
rd10 mice did not protect against light-dependent photoreceptor cell death whereas inactivation 
of rhodopsin signaling in rd10 mice did protect against light-dependent photoreceptor cell death. 
I also found that there was a significant reduction in the fully assembled PDE6 holoenzyme in 
addition to a reduction in each of the individual PDE6 subunits. Lastly, I found that the inhibitory 
PDE6g subunit was mislocalized but not the PDE6a catalytic subunit.  
 These results provide a strong groundwork for future investigation of the mechanisms 

underlying MSI protein function in the retina and the importance of their regulation of mRNA at 

the posttranscriptional level. Likewise, our findings obtained from the rd10 mice generate 

exciting possibilities that could allow for targeted treatment of patients with retinitis pigmentosa 

to inhibit photoreceptor cell loss while not affecting their vision or the canonical 

phototransduction cascade.
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Chapter 1: Literature Review 

Introduction, Background, and Hypotheses 

Vertebrate Photoreceptors 

Visual sensation begins with phototransduction when visible wavelength photons 

are absorbed and lead to a biochemical signaling cascade in the neural retina, which is 

located within the back of the eye1. Photoreceptors are retinal neurons specialized to 

detect these photons1. Photoreceptors are highly compartmentalized cells, and the 

phototransduction cascade occurs at the most distal end of the cell within a stacked 

membranous structure termed the outer segment1. Immediately proximal to the outer 

segment is the metabolic compartment of the photoreceptor termed the inner segment 

where energy production occurs, and cellular proteins are synthesized1. The outer 

segment is connected to the inner segment through a small “highway” called the 

connecting cilium which allows for transport of phototransduction proteins and various 

metabolites from the inner segment to the outer segment1. Proximal to the inner 

segment is the photoreceptor cell body where the nucleus resides1. On the other side of 

the cell body is the photoreceptor axon where signal propagation occurs and more 

distally the photoreceptor ribbon synapse is located and allows for electrochemical 

signal transmission to second-order neurons for further signal processing1,2.  

There are two different types of photoreceptors adapted for operation in different 

environmental conditions1. When illuminance is low, visual function is maintained by rod 

photoreceptors when can reliably detect single photons1,3. At higher levels of 

illuminance, visual function is replaced by cone photoreceptors which are less sensitive 

after rods have become saturated1,4. Cones can be further classified into two or more 

types based on their optimal spectral sensitivity1,4. This allows for color discrimination 
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where the output of each type of cone can be compared to the other types1,5. 

Intriguingly, cone photoreceptors do not saturate even at very high levels of 

illuminance1,4. 

Vertebrate Phototransduction in Rod Photoreceptors  

 Detection of light begins with the photon-induced isomerization of a chromophore 

called 11-cis retinal which is bound to a G-protein-coupled receptor called rhodopsin 

through a covalent linkage1,6. Photon absorption by 11-cis retinal leads to its conversion 

to all-trans retinal1,6. This isomerization ultimately causes a switch in conformation of the 

cytoplasmic domain of rhodopsin which allows it to interact with transducin, which is a 

heterotrimeric G-protein1,6. Transducin’s -subunit then swaps GDP for GTP which 

results in its dissociation from the  and  subunits of transducin1,6. Transducin’s 

activated -subunit then binds the phosphodiesterase-6 (PDE6) holoenzyme which 

leads to the relief of inhibition caused by PDE6’s  subunits to allow hydrolysis of the 

photoreceptor’s intracellular second messenger cyclic guanosine monophosphate 

(cGMP)1,6. The hydrolysis of cytoplasmic cGMP results in closure of membrane cation 

channels which were kept open through cGMP gating1,6. The closure of these cGMP 

gated channels causes a reduced influx of cations such as Na+ and Ca2+, which leads to 

hyperpolarization of the photoreceptor cell1,6.  

 Once the cascade has been activated, it must be reset. This begins when 

activated rhodopsin is phosphorylated by rhodopsin kinase (GRK1)1,7. In darkness, 

GRK1 is normally inhibited by a protein called recoverin which acts as a calcium sensor 

and inhibits GRK1 when calcium levels are high1,7. When calcium levels drop after 

phototransduction signaling, recoverin’s inhibition of GRK1 is relieved, and GRK1 goes 
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on to phosphorylate activated rhodopsin1,7. Another protein called arrestin binds 

phosphorylated rhodopsin to abrogate activation of transducin1,7. Transducin- must 

also be inactivated and this occurs through intrinsic GTPase activity which is regulated 

by a complex composed of G5, PDE6, RGS9, and R9AP1,8. PDE6 becomes 

inactivated again when PDE6 rebinds to block entry to the active site1,9. In addition, 

guanylate cyclase is activated to normalize cGMP concentrations1,6. This occurs when 

guanylate cyclase activating proteins (GCAPs) sense a decrease in calcium levels and 

subsequently interact with and stimulate guanylate cyclase to produce cGMP1,10. 

Photoreceptor Development 

Eye morphogenesis begins relatively early during the third week of embryonic 

development11. After blastulation and morulation of the zygote, the neural plate forms 

from the ectoderm during gastrulation12. The neural plate is organized into distinct 

regions including the forebrain, midbrain, hindbrain, and spinal cord12. The forebrain is 

further subdivided into the telencephalon, eye, and diencephalon12. The eye field is 

specified in the anterior forebrain and contains all the progenitors of the neural-derived 

eye structures13. Bilateral indentations called optic sulci form in the eye field14. The eye 

field then splits into two optic vesicles15. All neuroectoderm-derived cells within the eye 

arise from retinal stem cells from the optic vesicles14. The optic cup is formed after the 

optic vesicles bend around the lens placode, which is derived from surface 

ectoderm16,17. The optic cup consists of three regions which are the retinal pigment 

epithelium, neural retina, and optic stalk15. The inner layer of the optic cup will 

eventually become the neural retina whereas the outer layer of the optic cup will 

become the RPE15.  
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Fully differentiated cells in neural retina of the vertebrate eye arise from cells 

called retinal progenitor cells (RPCs)18. These RPCs can give rise to either rods, cones, 

bipolar cells, horizontal cells, amacrine cells, Muller glia, or ganglion cells18. The cones, 

horizontal cells, amacrine cells, and ganglion cells are born early in retinal development 

whereas the rods, Muller glia, and bipolar cells are born late in retinal development18. 

Intrinsic factors within the RPCs regulate their differentiation and the time at which they 

differentiate will influence the cell type that they give rise to18. Cells expressing the 

transcription factor Ikaros can become amacrine, horizontal, and ganglion cells, which 

are born early in retinal development18,19. Contrarily, cells expressing the transcription 

factor Casz1 can become rods and bipolar cells which are born late in retinal 

development18,20.  

Interestingly, cells expressing Olig2 early in retinal morphogenesis can give rise 

to cones whereas cells expressing Olig2 postnatally give rise to rods18,21. RPCs 

undergo cell division before some eventually commit to becoming a post-mitotic 

photoreceptor precursor as a result of a signaling cascade that is not well 

understood18,22. A subset of photoreceptor precursors will express Nrl transcription 

factor which is necessary for the formation of fully differentiated rod photoreceptors18,23. 

The photoreceptor precursors lacking Nrl expression will become fully differentiated 

cone photoreceptors18,23-26. Nrl also allows for rods to express a nuclear receptor called 

Nr2e3 which inhibits cone gene expression18,27. Additionally, immature cones express a 

nuclear hormone receptor called thrb18,28. Moreover, when the transcription factor 

Onecut1 is expressed in precursors also expressing the transcription factor Otx2, these 

cells can develop into cones18,29. When precursors only express Onecut1, these cells 
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differentiate into horizontal cells18. Furthermore, the transcription factor PRDM8 is 

necessary for the development of bipolar cells30. Lastly, the expression of the 

transcription factors Isl1 and Pou4f2 are sufficient for differentiation of cells to the 

ganglion cell lineage31.  

Photoreceptor Connecting Cilium Structure 

The photoreceptor outer segment is connected to the inner segment by a small 

intracellular bridge termed the connecting cilium through which all exchanges between 

the inner segment and outer segment occur32-33. The continuous phagocytosis of the 

photoreceptor outer segment distal end by the retinal pigment epithelium requires an 

enormous unidirectional trafficking of all outer segment proteins32,34. These proteins 

undergo nascent synthesis and final modification by the translation machinery and post-

translational modification machinery respectively before being transported from their site 

of synthesis in the inner segment through the connecting cilium and into the outer 

segment32,34.  

 Cilia are often described as cellular protrusions which are specialized to detect 

and convert extracellular signals into an intracellular response32,35. The extension of the 

cilia starts at the basal body located in the apical cytoplasm immediately underneath the 

cell’s plasma membrane32. The basal body has centriole microtubules with a 9X3+0 

arrangement32,36. Immediately distal to the basal body is the transition zone consisting 

of a 9X2+0 microtubule arrangement32,36. Distal to the transition zone is the axoneme 

consisting of a 9X2 + 2 microtubule arrangement32. Distal to the axoneme is the end 

cap of the cilia where microtubules from the axoneme are attached to the apical ciliary 

membrane32.  
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 The photoreceptor connecting cilium and outer segment can be thought of as a 

specialized type of immotile cilium32. Immediately underneath the apical inner segment 

membrane is the basal body of photoreceptors. Medial to the basal body are cilia 

rootlets which traverse into the photoreceptor cell body and terminate in the synaptic 

terminal32,37. This lengthy structure provides rigid architectural support for the basal 

body32. The microtubule organizing center at the basal body is where microtubule 

nucleation occurs and allows for projection from the plus-end32. The connecting cilium of 

photoreceptors corresponds to the primary cilium transition zone32,38. The transition 

zone is thought to be a regulatory center where transport and interchange of proteins 

across this zone is modulated and has a distinct composition from proteins in the 

cytoplasm32. The connecting cilium is approximately 1m in length and has a 9X2+0 

microtubule arrangement32. In addition, the connecting cilium in photoreceptors has a 

unique structure with Y-shaped cross-linkers emerging from each doublet between the 

A- and B-tubules and extend to the plasma membrane32,39. The plasma membrane 

surrounding the medial end of the connecting cilium is connected to the distal inner 

segment membrane and forms the periciliary ridge complex32,40. Opsin containing 

vesicles from the inner segment reach the periciliary ridge complex and dock while 

awaiting transport by the cilia trafficking complexes32,41. The distal inner segment 

membrane also contains small protrusions that resemble microvilli and are called 

calycal processes and might provide structural reinforcement for the outer segment32,42. 

When the axoneme extends into the outer segment, its microtubule arrangement 

changes from a 9X2+0 structure to a 9+0 structure32,43. Calcium binding proteins called 

Centrins are found in the connecting cilium and at the basal body. Centrins 1-3 are 
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found in the connecting cilium; the basal body centrioles also contain Centrin-2 and 

Centrin-3 while Centrin-4 is unique to the basal body32,44.  

 Important cilia associated protein complexes include the IFT-A and IFT-B 

complexes which are necessary for ciliogenesis and ciliary sustentation in 

eukaryotes32,45. These complexes allow for anterograde and retrograde transport of 

nonmembrane bound cargo throughout the cilium32,46. The IFT-A complex consists of 

primarily four high molecular weight proteins ranging from 120kDa to 150kDa whereas 

the IFT-B complex consists primarily of low molecular weight proteins less than 100kDa 

32,47. Kinesin-2 is responsible for anterograde transport of IFT complex along the 

axoneme after its formation adjacent to the basal body32,48. Contrarily, dynein is 

responsible for retrograde transport of IFT complex from the distal end of the axoneme 

toward the basal body32,49.  

Another important cilium associated protein complex is the BBSome50. The 

BBSome is a protein complex formed from eight different proteins, which are BBS1, 

BBS2, BBS4, BBS5, BBS7, BBS8, BBS9 and BBS18 to create an octamer51. 

Interestingly, the BBSome can interact with Arl6 if Arl6 has bound GTP52,74. BBS 

proteins have been shown to be important for the development of planar cell polarity, 

lipid homeostasis, IFT transport regulation, and centrosome-related functions32,53. 

Interestingly, BBS7 and BBS8 have been implicated in IFT complex assembly54. This 

suggests a crucial role for BBSome in ciliary transport55.  

Other important ciliary proteins whose defects can cause either retinitis 

pigmentosa or Leber congenital amaurosis include two interactors which are RPGR 

(retinitis pigmentosa GTPase regulator) and RPGRIP1 (RPGR-interacting protein-1) 
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32,56. RPGR is found at the basal body and axoneme in photoreceptors whereas 

RPGRIP1 anchors RPGR to the connecting cilium32,57,58. RPGRIP1 is thought to be 

important for outer segment disc morphogenesis since knockout leads to disruption in 

disc production32,59. Lastly, RP1 is a microtubule associated protein thought to be 

necessary for the organized disc stacking within the photoreceptor outer segment, and 

its deficiency results in retinitis pigmentosa32,60. RP1 interacts with the axonemal  

microtubules that are localized in the photoreceptor outer segment32,60. 

The Photoreceptor Outer Segment 

The location in which light detection and signal transduction occurs in 

photoreceptor sensory neurons is known as the outer segment61. This structure is often 

described as part of a highly specialized primary cilium which extends from the distal 

end of the connecting cilium61. The outer segment has a structure termed the axoneme 

which is connected to an ordered stack of disc membranes that is fully encased by the 

cell membrane in rods61. The base of the outer segment axoneme is composed of an 

arrangement of 9X2+0 microtubules, but more distally, the axoneme arrangement 

changes to 9+0 singlet microtubules61. There are also linkages between neighboring 

discs and between discs and the cell membrane which are not well understood61,62.  

 The G-protein-coupled receptor of the phototransduction cascade is rhodopsin, 

and its density within the outer segment disc membranes is exceptionally high at 

25,000um-2 61. This contributes to almost half the mass of outer segment disc 

membranes, with cholesterol and phospholipids making up the remainder and is thought 

to be an important structural component in the outer segment in addition to contributing 

directly to phototransduction61. Rom-1 and Peripherin-2 (Rds) are proteins found at disc 
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rims and contain transmembrane domains along with extracellular domains, and these 

proteins have been suggested to aid in membrane fusion during disc formation61,63. 

Prominin-1 is a cholesterol binding protein found at the base of the outer segment and 

has been implicated to aid in membrane bending61,64. Cep290 is found at the basal body 

in photoreceptors and studies have suggested that it is involved in the formation of the 

Y-shaped crosslinkers61,65. Interestingly, Cep290 has been shown to interact with 

RPGR, RGRIP1, Cc2d2a, PCM-1 and -tubulin66-69.  

BBS8 in photoreceptors  

Bardet-Biedl Syndrome Protein-8 (BBS8) is a tetratricopeptide repeat domain 

protein with a solenoid structure70. Mutations in this protein usually lead to Bardet-Biedl 

Syndrome which is a ciliopathy characterized by retinitis pigmentosa, hypogonadism, 

kidney disease, obesity, and polydactyly71. BBS8 is thought to be an adaptor for 

transport of IFT cargoes72. In photoreceptors, previous studies have suggested that the 

BBSome is crucial for the retrograde transport of cytosolic proteins from the outer 

segment into the inner segment51. This is supported by our lab’s previous work showing 

mislocalization of syntaxin-3 into the outer segment in the absence of BBS8, and we 

also observed that BBS8 is crucial for normal outer segment morphology51. Deletion of 

BBS8 also caused changes in BBSome subunit expression possibly allowing for 

compensation by other subunits due to the lack of BBS851. 

Twelve tissues are known to express BBS8 including the cortex, cerebellum, 

heart, liver, lung, kidney, testes, muscle, pancreas, stomach, thymus, and retina73. 

Interestingly, a mutation was identified that causes only non-syndromic retinitis 

pigmentosa in contrast to most Bbs8 mutations which cause Bardet Biedl Syndrome73. 
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The causative mutation was discovered to be a homozygous A to G substitution in 

intron 1 (IVS1-2 A>G)73. This mutation alters the splicing of a previously unidentified 30 

base pair exon called Exon 2A by disrupting the 3’ splice acceptor site73,74. The 

inclusion of this microexon into mature BBS8 transcripts was found to occur only in 

photoreceptors73,74. Therefore, the Bbs8 gene contains a photoreceptor-specific 

alternative exon encoding a 10 amino acid sequence that is only included in Bbs8 

transcripts of photoreceptor cells73,74. All other tissues were found to express the shorter 

Bbs8 isoform with Exon 2A spliced out73,74. Remarkably, this splice site is invariant in 33 

species73. Interestingly, two other mutations have been identified in BBS proteins 

including BBS3 (ARL6) A89V and BBS1 M390R that also cause non-syndromic retinitis 

pigmentosa whereas most other mutations will cause classical Bardet Biedl 

Syndrome74-76. Moreover, ARL6 also contains a photoreceptor alternative exon and this 

longer ARL6 protein isoform is necessary for photoreceptor survival74,77-78.  

Our laboratories previously delineated the likely mechanism underlying the mis-

splicing of Bbs8 Exon 2A74. We found that the IVS1-2 A>G mutation disrupts the normal 

3’ splice acceptor site and results in the activation of a cryptic 3’ splice site seven 

nucleotides downstream from the normal 3’ splice site within Exon 2A itself74. This mis-

splicing results in the splicing out of the first part of Exon 2A and the inclusion of only 

the latter part of the Exon 2A74. The inclusion of the truncated Exon 2A results in a 

frameshift mutation leading to the formation of premature stop codon in the downstream 

Exon 274. In essence, the IVS1-2 A>G mutation leads to deletion of BBS8 protein 

specifically in photoreceptor cells while still allowing BBS8 expression in other cell 

types74. The sequence elements located within exons such as exonic splicing 
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enhancers are usually necessary for exon inclusion into the mRNA74,79. Contrarily, we 

found that the elements controlling splicing are intronic and exonic splicing enhancers or 

exonic splicing silencers do not exist within Exon 2A74. Lastly, we found that intronic 

splicing enhancers exist between 150 nucleotides upstream and 120 nucleotides 

downstream of Exon 2A with the downstream intronic splicing enhancers being more 

important for Exon 2A recognition and inclusion74.  

Alternative Splicing 

Alternative splicing is an RNA processing mechanism found in almost all 

multicellular eukaryotic organisms80. Pre-mRNA splicing is more widely exploited in 

multicellular than unicellular eukaryotes81. Alternative splicing occurs in pre-mRNAs 

from approximately ~95% of mammalian genes82. Even though human and chimpanzee 

genes are >99% similar, ~7% of their corresponding alternative exons are differentially 

spliced in the same tissues possibly implicating alternative splicing as one mechanism 

responsible for species identity82. Through alternative splicing, protein coding regions of 

pre-mRNA can be differentially combined to ultimately form unique protein isoforms 

from the same gene sequence82. This process expands upon the number of proteins 

that can be formed from the same gene and is a significant contributor to the protein 

diversity found in multicellular eukaryotes82. Alternative splicing has also emerged as an 

important mechanism of posttranscriptional regulation of gene expression83. Intriguingly, 

splicing is substantially exploited in mammalian neuronal tissues as shown by an 

abundance of alternatively spliced transcripts leading to unique protein isoforms84,85. 

Moreover, alternative splicing has been shown to be crucial for neurons during their 

development, and this process has been shown to be critical for axon guidance and 
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synaptogenesis85. Interestingly, a specialized type of splicing leading to incorporation of 

small exons has been shown to be most abundant in neurons84. It is thought that the 

alternative exons which are only expressed in certain tissues either encode intrinsically 

disordered regions that may serve as sites for posttranslational modifications or be a 

binding motif which allows for protein-protein interaction82. 

Alternative pre-mRNA splicing is catalyzed by a ribonucleoprotein complex called 

the spliceosome82,86. Spliceosome assembly requires only a 5’ splice site, 3’ splice site, 

and branch point sequence (usually near a polypyrimidine tract) as these are the only 

conserved sequence elements of introns82,86. The 5’ splice site consists of a GU RNA 

sequence at the 5’ end of the intron whereas the 3’ splice site consists of an AG RNA 

sequence at the 3’ end of the intron82,86. Upstream from the 3’ splice site is the 

polypyrimidine tract which is a region with high expression of the cytosine and uracil 

nucleobases82,86. Near the polypyrimidine tract is the branch point sequence consisting 

of an adenine nucleobase required for looping out of the intron82,86.  

The reactions catalyzed by the spliceosome is transesterification occurring in two 

steps82,86. In the first step, the phosphate of the 5’ splice site guanine nucleotide 

undergoes nucleophilic attack by the 2’-OH of the branch point sequence adenine82,86. 

In the second step, the phosphate of the first nucleotide in the downstream exon 

undergoes nucleophilic attack by the 3’‑OH of the last nucleotide in the upstream 

exon82,86.  

This process begins when the 5’ splice site is recognized by the U1 small nuclear 

ribonucleoprotein (snRNP) 82,86. At the same time, U2AF binds the 3’ splice site, and 

splicing factor 1 binds the branch point sequence82,86. After initial complex formation, 
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splicing factor 1 is replaced by U2 snRNP to form a complex that then interacts with the 

U4/U5/U6 tri-snRNP to form the fully assembled spliceosome82,86. U1 and U4 snRNPs 

then leave before the transesterification reaction takes place and the excised intron 

lariat is removed from the pre-mRNA82,86.  

The diversity of mature mRNAs coming from a single pre-mRNA can be 

increased through a number of possible splicing mechanisms82. Most notably, some 

exons can be skipped or spliced out in some cells but not others, and this exon is called 

an alternative cassette exon82. In addition, alternative 5’ splice sites or alternative 3’ 

splice sites can be utilized depending on cellular context82. Intriguingly, an intron can 

also be retained and not spliced out to generate a unique mature mRNA as well82. 

Lastly, there are cases of mutually exclusive exon inclusion where only one exon will be 

spliced in but not the other82. Altogether, these mechanisms increase mature mRNA 

diversity.  

Alternative splicing can be further modulated through cis-regulatory sequences 

and trans-acting factors82. There are at least four major types of cis-regulatory 

sequences82. The first is an exonic splicing enhancer region which is a sequence 

located within an exon that acts to promote inclusion of an exon82. The second is an 

exonic splicing silencer region which is a sequence inside an exon that acts to promote 

exclusion of an exon82. The third is an intronic splicing enhancer which is a sequence 

within an intron that acts to promote inclusion of an exon82. The fourth is an intronic 

splicing silencer which is a sequence inside an intron that acts to promote exclusion of 

an exon82. These cis-regulatory sequences can be further modulated when an RNA 

adopts secondary structure which can act to hide or expose these regulatory regions82. 
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Trans-acting factors including RNA binding proteins can bind to these cis-regulatory 

sequences to promote either inclusion or exclusion of an exon, and some factors are 

tissue-specific, and their expression levels or activity can be modulated by various 

signaling pathways82. 

The Musashi (MSI) RNA binding protein family 

The MSI RBP family consists of two paralogues in vertebrates, MSI1 and MSI287-

90. The MSI1 and MSI2 proteins have two highly conserved RNA binding domains 

(RBDs) in the N-terminal region which show ~90% sequence identity87. The first RBD of 

MSI1 was shown to interact with the GUAG RNA sequence while the second RBD is 

thought to interact with the UAG RNA sequence87. The high degree of sequence identity 

between the MSI1 and MSI2 RBDs suggests a target functional redundancy within the 

MSI protein family and this has been confirmed in previous studies88,91. The two RBDs 

of MSI1 and MSI2 are followed by a less conserved C-terminal region which shows 

approximately 70% sequence similarity92.  

The MSI RBPs are well-studied regulators of mRNA translation in the 

cytoplasm93-94. Several reports have shown them to either repress or activate translation 

of target mRNAs depending on the cellular context95-100. Intriguingly, several studies 

have shown MSI1 to be localized inside the nuclei of some cell types101-104, and the 

nuclear localization signal for MSI1 lies within its first RBD105. However, the significance 

of this nuclear localization remains largely unknown. Our previous studies led to our 

hypothesis that the MSI proteins in the nucleus regulate the splicing of photoreceptor-

specific exons into target mRNAs in vivo101. Only one other group has suggested that 

the MSI proteins could regulate alternative splicing of their target mRNAs106. 
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Alternative Splicing and Retinal Degeneration 

 It has been estimated that 10% of disease-causing point mutations disturb core 

splice sites; in addition, another 25% of mutations are expected to alter regulation of 

mRNA splicing74,107,108. These mutations can disrupt cis-regulatory sequences of a gene 

or genes encoding trans-acting splicing factors109. Mutations affecting cis-regulatory 

sequences can lead to inappropriate exon skipping, intron inclusion, exon inclusion, or 

activation of cryptic splice sites109. This can lead to insertions, deletions, frameshifts, 

and/or premature termination109.  

Interestingly, many mutations affecting splice sites have been found to cause 

retinitis pigmentosa and cone-rod dystrophies109. For example, alternative exon 

mutations in COL2A1 cause Stickler Syndrome109. Likewise, an intronic mutation 

affecting the splicing of an alternative exon in RPGR causes X-linked retinitis 

pigmentosa109. Moreover, mutations in ubiquitously expressed splicing factors including 

PRPF3, PRPF8, and PRPF31 can specifically cause autosomal dominant retinitis 

pigmentosa while not significantly affecting other tissues109. It is thought that these 

mutations affect photoreceptors since photoreceptors exploit splicing machinery to a 

much higher extent than other cells due to their high rate of protein synthesis which is 

required to replace the phagocytosed phototransduction proteins and outer segment 

membranes at the distal end of the OS109.  

Hypotheses 

Photoreceptor neurons are highly specialized cells that use ubiquitously 

expressed cilia-related genes to ultimately produce a characteristic organelle called the 

outer segment (OS)110. Our previous studies show that photoreceptors uniquely splice 
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pre-mRNA from cilia-related genes to produce photoreceptor-specific protein 

isoforms101. Despite studies implicating the importance of photoreceptor-specific protein 

isoforms73, little is known about the factors that regulate alternative splicing in 

photoreceptors. This is of clinical significance as there have been several point 

mutations that have been identified which hinder alternative splicing and subsequently 

lead to blindness109. The abundance of these point mutations that affect alternative 

splicing in the retina suggests that this mechanism plays a crucial role in vision109. One 

family of proteins that has recently been implicated in regulating alternative splicing in 

photoreceptors is an RNA binding protein family called Musashi (MSI)101. The MSI 

proteins have previously been shown to regulate translation of several target mRNAs in 

the cytoplasm95-100. However, our recently published work has shown that the MSI 

proteins are localized at high levels in photoreceptor nuclei101, but the importance of this 

nuclear localization remains unknown. Moreover, several studies have described high 

expression of MSI protein expression in the retina but almost nothing is known about 

the function of this protein family in the vertebrate retina101-104. 

The goal of this work is to examine the biological significance of MSI protein 

expression in the retina and uncover the mechanisms behind their function. Our in vitro 

studies led to the hypothesis that the MSI proteins regulate alternative splicing in 

mammalian photoreceptor nuclei101. Through motif enrichment analysis and cell culture 

assays, we found that the MSI proteins potentially regulate the splicing of many 

mammalian photoreceptor pre-mRNAs most notably from the Cc2d2a, Cep290, Bbs8, 

and Prom1 genes101. Nonetheless, it is possible that the MSI proteins might have a 

compound role where they also regulate mRNA translation in the cytoplasm. To 
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investigate our predicted role of MSI in photoreceptor-specific alternative splicing, I 

generated retina- and rod-specific conditional knockout mouse models lacking either 

MSI1, MSI2, or both MSI1 and MSI2. The central hypothesis of this work is that the MSI 

proteins regulate pre-mRNA splicing in photoreceptors, and consequently, these 

proteins are necessary for normal photoreceptor function, morphology, and survival. As 

a corollary to this hypothesis, in the absence of the MSI proteins, I predict that there will 

be dysregulation of pre-mRNA splicing (including reduced incorporation of 

photoreceptor-specific exons) and disrupted photoreceptor function and morphology. 

This will allow for delineation of the function of the MSI proteins in vertebrate 

photoreceptors.  

 We also wanted to examine the molecular mechanisms underlying retinitis 

pigmentosa which we hope will translate to personalized patient treatment and allow for 

better mitigation of disease symptoms. Unfortunately, the mechanisms underlying 

photoreceptor degeneration in retinitis pigmentosa are not well understood111. To gain 

more insight into the signaling pathways underlying photoreceptor cell death in retinitis 

pigmentosa, we exploited the retinal degeneration-10 (rd10) mouse model, which is one 

of the premier models used to study retinitis pigmentosa112. The rd10 mouse model 

harbors a mutation in PDE6 which is the effector enzyme of the phototransduction 

cascade, and the resultant phenotype mimics the phenotype observed in humans112. In 

this model, photoreceptor degeneration occurs when rd10 mice are reared in normal 

light conditions112. Contrarily, photoreceptors are preserved when rd10 mice are reared 

in dark112. Previously, it has been shown that exposure to bright light leads to 

photoreceptor degeneration in wildtype mice, and this apoptotic signaling is mediated 
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through rhodopsin signaling113. We hypothesized that a similar signaling cascade is 

occurring in rd10 mice. To test our hypothesis, we inactivated either transducin or 

rhodopsin signaling in rd10 mice to dissect the signaling cascades underlying 

photoreceptor cell death. This will allow us to delineate the signaling pathways that are 

mediating photoreceptor cell death in the rd10 mouse model of retinitis pigmentosa.  
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ABSTRACT 

We previously proposed a role for the Musashi proteins, MSI1 and MSI2, in 

photoreceptor cell development that is mediated by their ability to control alternative 

splicing. Simultaneous deletion of Msi1 and Msi2 produced photoreceptors that did not 

respond to light, displayed severely disrupted OS morphology and axonemal defects. At 

postnatal day 5, we observed an increase in proliferating retinal progenitor cells in the 

knockout animals, suggesting delay in photoreceptor development. As expected, loss of 

Musashi prevented the use of photoreceptor-specific exons in transcripts important for 

OS morphogenesis, ciliogenesis and synaptic transmission. However, deletion of the 

photoreceptor-specific exons in Ttc8, Cc2d2a, Cep290, Cacna2d4, and Slc17a7 did not 

impair retinal development or visual function. We demonstrate a critical role for Musashi 

in the morphogenesis of terminally differentiated photoreceptor neurons. This role is in 

stark contrast with the canonical function of the two proteins in maintenance and 

renewal of stem cells. 
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INTRODUCTION 

In eukaryotes, alternative splicing of pre-mRNA is a process that increases 

protein diversity and controls gene expression. Diversification of  proteomes through 

alternative splicing is a defining characteristic of metazoans and was expanded 

dramatically in bilaterians1. Alternative splicing is particularly prevalent in vertebrate 

neurons and is critical for the development and function of vertebrate nervous systems2–

6. 

We previously showed that photoreceptor neurons exploit a unique splicing 

program7. Motif enrichment analysis suggested that Musashi-1 (MSI1) and Musashi-2 

(MSI2), promote the use of photoreceptor specific exons7. We further showed that MSI1 

is critical for utilization of photoreceptor specific exon in Tetratricopeptide repeat domain 

protein-8 (Ttc8)7. In addition, Musashi promotes the splicing of several photoreceptor 

specific exons when over-expressed in cultured cells7. Interestingly, the Musashi 

proteins are known modulators of mRNA translation in cytosol8,9, where they either 

block or enhance translation of mRNA depending on signaling of cell10–15.  

The MSI1 and MSI2 proteins have two highly conserved RNA binding domains 

(RBDs) in the N-terminal region which show close to 90% sequence identity and 

recognize a similar UAG motif in RNA16. The two RBDs of MSI1 and MSI2 are followed 

by a less conserved C-terminal region which shows approximately 70% sequence 

identity17. The high degree of sequence identity between the MSI1 and MSI2 results in 

functional redundancy between the two proteins18,19.  

Vertebrate photoreceptors are neurons detecting and transducing light stimuli. 

Photoreceptors are characterized by segment morphology which allows for 
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compartmentalization of phototransduction, core cellular functions, and synaptic 

transmission. The light sensing machinery is confined to outer segment, a stack of 

membranes that is elaborated by cell’s modified primary cilium. The outer segment is 

dynamic structure that is remade every 7 to 10 days. Consequently, maintenance of the 

outer segment requires high rate of transport of membranes and proteins through the 

connecting cilium20.  

Interestingly, the predicted splicing targets of Musashi in photoreceptors include 

pre-mRNAs from ciliary (Ttc8, Cep290, Cc2d2a, Prom1) and synaptic-associated genes 

(Cacna2d4, Slc17a7)21–27. These genes have been showed to be crucial for 

photoreceptor development21–27. We proposed that production of photoreceptor specific 

splicing isoforms that is promoted by Musashi is necessary for the development and 

maintenance of photoreceptor cells in vivo7. 

To test if Musashi drives photoreceptor development and function, we removed 

Msi1 and Msi2 in the developing retina and rod photoreceptor cells. We find that 

Musashi proteins are essential for photoreceptor function, morphogenesis, and survival 

but not their specification. Specifically, the Musashi proteins are crucial for outer 

segment (OS) and axoneme development. As expected disruption of the Musashi 

genes, led to loss of expression of photoreceptor specific splicing isoforms. Surprisingly, 

deleting the photoreceptor-specific exons of the, Ttc8, Cc2d2a, Cep290, Cacna2d4, and 

Slc17a7 genes does not produce a detectable phenotype suggesting that the loss of 

vision in the Musashi mutants is likely independent of the role of the Musashi proteins in 

controlling alternative splicing.  
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MATERIALS AND METHODS 

Generation of mice and genotyping 

Mice carrying floxed alleles for Msi1  and Msi2  were  provided by Dr. Christopher 

Lengner from the University of Pennsylvania. Six3 Cre transgene or Nrl Cre transgenes 

were used to delete the floxed alleles in developing retina or rod photoreceptors. All 

mouse lines were devoid of naturally occurring rd1 and rd8 alleles28,29. Males 

hemizygous for the Six3 Cre transgene or Nrl Cre transgene and floxed for either Msi1, 

Msi2, or both Msi1 and Msi2 were mated with females floxed for either Msi1, Msi2, or 

both Msi1 and Msi2 to obtain experimental knockout mice and littermate control. The 

offspring of breeding pairs were genotyped using PCR of DNA derived from ear 

biopsies. The Msi1 wildtype and floxed alleles were identified using following primers: 

(5’-CGG ACT GGG AGA GGT TTC TT-3’ and 5’-AGC TCC CCT GAT TCC TGG T-3’)30. 

The Msi2 wildtype and floxed alleles were identified by using following primers: (5’-GCT 

CGG CTG ACA AAG AAA GT-3’ and 5’-TCT CCT TGT TGC GCT CAG TA-3’)30. The 

presence of the Six3 Cre transgene was determined using following primers: (5’-CCC 

AAA TGT TGC TGG ATA GT-3’ and 5’-CCC TCT CCT CTC CCT CCT-3’)31. The 

presence of the Nrl Cre transgene was determined using following primers: (5’-TTT 

CAC TGG CTT CTG AGT CC-3’ and 5’-CTT CAG GTT CTG CGG GAA AC-3’)32. The 

presence of Cre recombinase was determined using following primers: (5’-CCT GGA 

AAA TGC TTC TGT CCG-3’ and 5’-CAG GGT GTT ATA AGC AAT CCC-3’)33. All 

experiments were executed with the approval of the Institutional Animal Care and Use 

Committee at West Virginia University. all experiments were carried out with adherence 

to the principles set forth in the ARVO Statement for the Ethical Use of Animals in 
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Ophthalmic and Vision Research which advocates the use of the minimum number of 

animals per study needed to obtain statistical significance. 

Electroretinography, Immunoblotting, and Reverse Transcriptase PCR 

Electroretinography, immunoblotting, and reverse transcriptase PCR were 

conducted using previously described protocol from our laboratory7,34,35. 

Immunofluorescence Microscopy 

Immunofluorescence microscopy was carried out using a modified procedure in 

our laboratory34,35. Briefly, eyes were enucleated, and the cornea and lens were 

discarded. After dissection, eyes were fixed by immersion in 4% paraformaldehyde in 

PBS for one hour. After washing the eyes in PBS three times for ten minutes each, they 

were dehydrated by overnight incubation in 30% sucrose in PBS. Eyes were then 

incubated in a 1:1 solution of OCT:30% sucrose in PBS for one hour and frozen in OCT 

(VWR, Radnor, PA). The frozen tissues were sectioned using a Leica CM1850 cryostat 

for collecting serial retinal sections of 16μm thickness. The retinal cross-sections were 

then mounted onto Superfrost Plus microscope slides (Fisher Scientific, Pittsburgh, PA). 

Slide sections were then washed and permeabilized with PBS supplemented with 0.1% 

Triton X-100 (PBST) and incubated for one hour in a blocking buffer containing 10% 

goat serum, 0.3% Triton X-100, and 0.02% sodium azide in PBS. Retinal sections were 

then incubated with primary antibody in a dilution buffer containing 5% goat serum, 

0.3% Triton X-100, 0.02% sodium azide, and primary antibody at 1:500 dilution in PBS 

overnight at 4oC followed by three 5 minute washes using PBST. Sections were then 

incubated in the same dilution buffer containing secondary antibody and DAPI at 1:1000 

for one hour. Slides were washed with PBST three times for five minutes each before 
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treating with Prolong Gold Antifade reagent (ThermoFisher, Waltham, MA) and securing 

the coverslip. Microscope slides were imaged using a Nikon C2 Confocal Microscope.  

Retinal histology of the mouse models 

Following euthanasia, eyes were enucleated using a C-shaped forceps after 

marking the superior pole and incubated in Z-fixative for >48 hours before shipment and 

tissue processing by Excalibur Pathology Inc. (Norman, OK)34,35. The embedding, serial 

sectioning, mounting, and hematoxylin/eosin (H&E) staining were performed by 

Excalibur Pathology. A Nikon C2 Microscope equipped with Elements software was 

used to image the slides.  

Transmission Electron Microscopy  

 After euthanasia, a C-shaped forceps was used to enucleate the eye, and the 

cornea was discarded34,35. Eyes were then incubated in a fixative solution containing 

2.5% glutaraldehyde and 2% paraformaldehyde in 100mM sodium cacodylate buffer at 

pH 7.5 for 45 minutes before removal of the lens. After lensectomy, eyes were placed 

back into fixative for 72 hours before shipment, tissue processing, and imaging at the 

Robert P. Apkarian Integrated Electron Microscopy Core at Emory University.  

Antibodies 

The following primary antibodies were used throughout our studies: rat anti-MSI1 

(1:1000; Medical and Biological Laboratories, Woburn, MA), rabbit anti-MSI2 (1:2000; 

Abcam, Cambridge, MA), mouse anti- -tubulin (1:10,000; Sigma-Aldrich, St. Louis, 

MO), rabbit anti-phospho-histone H3 (1:500; Cell Signaling, Danvers, MA), mouse anti-

Ki67 (1:500; BD Biosciences, San Jose, CA), rabbit anti-active Caspase-3 (1:500; 

Promega, Madison, WI), rhodamine peanut agglutinin (1:1000; PNA: cone OS sheath 
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marker, Vector laboratories, Burlingame, CA), rabbit anti-peripherin-2 (1:2000) was a 

kind gift by Dr. Andrew Goldberg from Oakland University, rabbit anti-PDE6β (1:2000; 

ThermoFisher, Waltham, MA), mouse anti-acetylated -tubulin (1:1000; Santa Cruz, 

Dallas, TX), guinea pig anti-MAK (1:500; Wako, Richmond, VA), mouse anti-

glutamylated tubulin (1:500; AdipoGen Life Sciences, San Diego, CA), mouse anti-Ttc8 

(1:1000; Santa Cruz, Dallas, TX), rabbit anti-Ttc8 Exon 2A (1:1000; custom made7), 

mouse anti-GAPDH (1:10,000; Fitzgerald, Acton, MA), and 4′,6-diamidino-2-

phenylindole (DAPI: nuclear counterstain; 1:1000; ThermoFisher, Waltham, MA). 
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RESULTS 

Validation of the conditional knockout mouse models 

To begin, we tested the expression of Musashi proteins in various tissues. 

Musashi is known to be expressed in stem cell but its expression in adult tissue is not 

well known. Out of all the tissues we tested, retina had the highest expression of MSI1 

and MSI2 proteins (Figure 1A). To test the biological significance of MSI expression in 

the murine retina, we used Cre-LoxP conditional recombination to knock out either 

Msi1, Msi2, or both the Msi1 and Msi2 genes throughout the entire retina and ventral 

forebrain using the Six3 Cre transgene (Supplementary Figure 1)36. Throughout this 

work, we refer to Msi floxed mice which are hemizygous for the Six3 Cre transgene as 

ret-Msi-/- mice. The conditional recombination results in the deletion of Msi1’s 

transcription start site, exon 1, and exon 2 (Supplementary Figure 1)19. For Msi2, the 

transcription start site and the first four exons are removed after cre-mediated 

recombination (Supplementary Figure 1)19. The ablation of MSI1 and MSI2 was 

confirmed by immunoblotting retinal lysates from knockout mice at postnatal day 10 

(PN10) (Figure 1B). Immunofluorescence microscopy of retinal cross sections obtained 

from the knockout mice also affirmed the absence of MSI1 and MSI2 expression in the 

retina (Figure 1C).  

Notably, MSI2 protein levels were moderately but reproducibly upregulated in 

Msi1 knockout retina (Figure 1B, Supplementary Figure 2). We did not observe the 

inverse, upregulation of MSI1 protein in Msi2 knockouts (Supplementary Figure 2). 

These data shows that MSI1 protein regulates the expression of MSI2, and could 

indicate existence of a homeostatic mechanism for regulation overall Musashi protein 
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levels. 

The MSI proteins are crucial for photoreceptor function 

 To determine if the MSI proteins are required for photoreceptor function, we 

performed electroretinographic (ERG) recordings of the Msi conditional knockout mice 

at PN16 and monitored for changes in retinal function up to PN180. Figure 2A shows 

the scotopic and photopic ERG waveforms of the ret-Msi1-/-, ret-Msi2-/-, and ret-Msi1-/-

:Msi2-/- mice at PN16 immediately after mice open their eyes37. When both Msi genes 

are removed, no scotopic or photopic retinal function remains as shown by absence of 

conspicuous “a”-waves and “b”-waves (Figure 2A). However, significant retinal function 

remains in the ret-Msi1-/- and ret-Msi2-/- single knockout mice. We characterized the 

retinal function of the ret-Msi1-/- and ret-Msi2-/- mice further to see if there was a 

photoresponse deficit at higher light intensities or as the mice aged (Figure 2B-E). In 

ret-Msi1-/- mice, there was a statistically significant reduction in photoreceptor “a”-wave 

amplitudes at almost all light intensities (Figure 2B). This reduction in the photoreceptor 

“a”-wave amplitude persisted in ret-Msi1-/- mice up to PN180 (Figure 2C). On the other 

hand, ret-Msi2-/- mice at PN16 had normal photoreceptor function at all of the light 

intensities we tested (Figure 2D). The “a”-wave amplitude began to decrease 

progressively in ret-Msi2-/- mice as they aged, and this became significant at PN120 

(Figure 2E). Overall, this data shows that the MSI proteins essential for photoreceptor 

function, and the two proteins are partially redundant. 

Intrinsic expression of MSI in photoreceptors is crucial for photoreceptor 

function 

We next sought to determine if the phenotype of the ret-Msi-/- mice was due to 
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the absence of MSI expression in photoreceptors or if deletion of MSI in other retinal 

cell types or retinal progenitors were contributing to the loss of vision. To this end, we 

generated rod-specific Msi conditional knockouts by crossing Msi floxed mice with mice 

hemizygous for the Nrl Cre transgene where the Nrl promoter activates Cre expression 

in rod photoreceptors38. Throughout this work, we refer to the Msi floxed mice which are 

hemizygous for the Nrl Cre transgene as rod-Msi-/- mice. After confirming the loss of 

MSI proteins in rod photoreceptors (Supplementary Figure 3), we collected ERG traces 

to analyze the retinal function of the knockout mice after ablation of the Msi genes in 

rods (Supplementary Figure 4A-E). Supplementary Figure 4A shows the scotopic and 

photopic ERG waveforms of the rod-Msi1-/-, rod-Msi2-/-, and rod-Msi1-/-:Msi2-/- mice at 

PN16. As observed in the ret-Msi1-/-:Msi2-/- mice, no conspicuous rod function was 

observed in the rod-Msi1-/-:Msi2-/- mice at PN16 which is demonstrated by absence of 

conspicuous “a”-wave under scotopic testing conditions (Supplementary Figure 4A). 

Again, we examined the rod-Msi1-/- and rod-Msi2-/- single knockout mice further to see 

if the photoresponse phenotype was comparable to that obtained from the ret-Msi1-/- 

and ret-Msi2-/- mice. In rod-Msi1-/- mice at PN16, there was a reduction in 

photoreceptor “a”-wave amplitudes at several light intensities (Supplementary Figure 

4B). This reduction in “a”-wave amplitude persisted as these mice aged up to PN180 

(Supplementary Figure 4C). Contrarily, PN16 rod-Msi2-/- mice had no changes in 

photoreceptor function at all of the light intensities we examined (Supplementary Figure 

4D). As observed in the ret-Msi2-/- mice, the “a”-wave amplitude began to decrease 

progressively as these mice aged, and this decrease became statistically significant at 

PN90 (Supplementary Figure 4E). The similar phenotypes of the ret-Msi  and rod-Msi 
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knockout mice shows that the intrinsic expression of MSI in photoreceptors is crucial for 

their function and that deletion of MSI in other cell types likely does not contribute 

significantly to the phenotype observed in the ret-Msi-/- mice. Therefore, throughout the 

rest of our studies, we focus on the ret-Msi1-/-:Msi2-/- mouse model for our experiments 

since there is a compensation in function occurring between MSI1 and MSI2 in the 

single knockout mice and to avoid confounding results that might be obtained when 

Msi1 and Msi2 are deleted only in rod but not cone photoreceptors.  

Retinal cell death occurs in the absence of the MSI proteins 

We next wanted to examine the mechanism behind the photoreceptor 

dysfunction seen in the ret-Msi1-/-:Msi2-/- mouse model. One of the common causes of 

a reduced ERG is photoreceptor cell death. Therefore, we performed histological 

analysis of the ret-Msi1-/-:Msi2-/- mice at PN5, PN10, PN16, and PN180 (Figure 3A-D). 

In ret-Msi1-/-:Msi2-/- mice at PN5, even before the neural retina has differentiated 

completely, there is a reduction in the neuroblast layer (NBL) thickness which was 

quantified across the superior-inferior axis (Figure 3A, left and right panels). There is 

also a more disordered arrangement of NBL nuclei in ret-Msi1-/-:Msi2-/- mice with cells 

more tightly packed together compared to its littermate control (Figure 3A, left panel). At 

PN10, the outer nuclear layer (ONL), inner nuclear layer (INL), and ganglion cell layer 

(GCL) of the retina all form in ret-Msi1-/-:Msi2-/- mice but there is a reduction in the 

number of layers of photoreceptor nuclei (Figure 3B, left and right panels). At PN16, the 

number of layers of ONL nuclei continue to decrease suggesting that photoreceptor cell 

death is occurring (Figure 3C, left and middle panels). However, at this age, there are 

no statistically significant changes in the number of layers of INL nuclei (Figure 3C, left 
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and right panels). By 6 months of age, the retina of ret-Msi1-/- :Msi2-/- mice was 

severely degenerated with a complete loss of ONL nuclei in addition to a significant 

reduction in the number of layers of INL nuclei (Figure 3D, left, middle, and right 

panels).  

Changes in proliferation during retinal development in the absence of MSI1 and 

MSI2 

 After observing a significant reduction in NBL nuclei in ret-Msi1-/-:Msi2-/- mice 

even before their retinas had fully differentiated, we wanted to investigate if this 

phenotype is related to the proliferation or premature death of retinal progenitor cells 

(RPCs). We collected retinal cross sections of ret-Msi1-/-:Msi2-/- mice at PN5 and 

probed with antibodies against phospho-histone H3 (PHH3) and Ki67, which are two 

commonly used markers of proliferation39–41. We also examined apoptosis of retinal 

cells in ret-Msi1-/-:Msi2-/- mice by staining with an antibody against the apoptotic 

marker anti-active Caspase-3 (CASP3)40,42. In ret-Msi1-/-:Msi2-/- mice, we witnessed a 

substantial increase of both PHH3+ and Ki67+ cells within the central retina whereas 

the littermate control had very few PHH3+ and Ki67+ cells within the central retina 

(Figure 4A and B). We also noticed a trend toward increase of PHH3+ and Ki67+ cell in 

the peripheral retina of ret-Msi1-/-:Msi2-/- mice (Figure 4A and B). No significant 

changes in proliferation marker staining were witnessed when comparing the superior 

and inferior retina of ret-Msi1-/-:Msi2-/- mice. CASP3 staining of retinal cross sections 

from ret-Msi1-/-:Msi2-/- mice showed no significant differences in the number of 

CASP3+ cells in either the central or peripheral retina (Figure 4C). Our data points to 

altered proliferation and not increased apoptosis at early stages of retinal development 
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as the cause for the reduced number of NBL nuclei at PN5 in the Musashi knockout 

mice. 

The MSI proteins are required for OS development 

 Photoreceptor cells are present in the ret-Msi1-/-:Msi2-/- as indicated by the well-

defined ONL (Figure 3C). We therefore examined the structure of the OS in ret-Msi1-/-

:Msi2-/- mice at PN16 by immunofluorescence microscopy using three different OS 

markers, anti-Peripherin-2 (PRPH2: OS marker), anti-Phosphodiesterase-6  (PDE6 : 

rod OS marker), and peanut aglutinin (PNA: cone OS marker). After staining retinal 

cross sections from ret-Msi1-/-:Msi2-/- mice with PRPH2 and PNA, we observed a 

severe shortening of the photoreceptor outer segment structure (Figure 5A). This result 

was not limited to PRPH2, as staining with the rod OS marker PDE6  demonstrated the 

same phenotype (Figure 5B). The outer segment of cone photoreceptors also appears 

to be severely shortened as shown by the abnormal PNA staining (Figure 5A-B). This 

defect is likely independent of degeneration since the same phenotype is observed at 

PN10 before significant degeneration occurs and as the OS begins to elaborate 

(Supplementary Figure 6). Lastly, no mislocalization of PDE6  is found in the ONL or 

inner segment of ret-Msi1-/-:Msi2-/- mice suggesting that while the MSI proteins are 

required for outer segment formation they are not regulating trafficking or localization of 

PDE6 (Figure 5B). No significant changes were observed in the single knockouts 

(Supplementary Figure 7). 

The MSI proteins are crucial for photoreceptor outer segment and axoneme 

development 

Using transmission electron microscopy, we imaged ultrathin retinal sections 
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from ret-Msi1-/-:Msi2-/- mice at PN10 when the OS begins to elaborate (Figure 6). 

When examining the OS/IS boundary in ret-Msi1-/-:Msi2-/- mice by electron microscopy, 

we observed very little if any conspicuous OS formation (Figure 6A). Instead, the IS of 

the ret-Msi1-/-:Msi2-/- mice appears to come in direct contact with the RPE (Figure 6A-

B). At higher magnification, the photoreceptors of ret-Msi1-/-:Msi2-/- mice displayed 

either no OS formation or formation of aberrant and undersized OS (Figure 6B left, 

middle, and right panels). The basal body and connecting cilium (CC) appear to be 

normal in structure and size (Figure 6B, middle panel).  

To further examine the structure of the connecting cilium and the axoneme, we 

stained retinal cross sections from ret-Msi1-/-:Msi2-/- mice at PN10 using antibodies 

directed against the connecting cilium (glutamylated and acetylated -tubulin) and 

axoneme (MAK) markers40,43–45. Probing with glutamylated and acetylated -tubulin 

antibodies showed that there were no changes in the length of the CC (Figure 7A, C-D). 

This is in agreement with Figure 5B which revealed a functional connecting cilium due 

to normal trafficking of PDE6 to OS. Contrarily, staining with the anti-MAK antibody 

showed a substantial reduction in the length of the axoneme accompanied with 

punctate staining suggesting a severe structural defect of the axoneme (Figure 7A-B).  

The MSI proteins promote splicing of photoreceptor specific exons 

 Our previous studies suggested that the MSI proteins are regulating alternative 

splicing of their target pre-mRNAs in vertebrate photoreceptors7. To test if the Musashi 

proteins are responsible for the inclusion of photoreceptor specific exon , we analyzed 

the splicing in ret-Msi1-/-:Msi2-/- mice of  pre-mRNAs from cilia-and OS-related genes 

that we previously showed to express photoreceptor specific isoforms (Figure 8). We 
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witnessed a drastic reduction in alternative exon inclusion in ret-Msi1-/-:Msi2-/- mice for 

all of the tested transcripts (Figure 8B). We analyzed isoform expression at the protein 

level for Ttc8 using two different antibodies, one which recognizes all Ttc8 protein 

isoforms (Pan-Ttc8) and the other which recognizes the photoreceptor-specific isoform 

of Ttc8 by binding the epitope encoded by Exon 2A (the photoreceptor-specific exon of 

Ttc8) (Figure 8A, bottom panel). After probing retinal lysates from the ret-Msi1-/-:Msi2-/- 

mice with the pan-Ttc8 antibody, we observed faster migration of the Ttc8 protein 

compared to the littermate control suggesting that the Exon 2A was not included (Figure 

8C). Concordantly, when probing for the photoreceptor-specific isoform of Ttc8 using 

the Ttc8 Exon 2A antibody, we saw a absence of this isoform in ret-Msi1-/-:Msi2-/- mice 

(Figure 8C). Taken together these results demonstrate that the Musashi proteins are 

required for the inclusion of photoreceptor specific alternative exons..  

Alternative exons included in photoreceptor mRNAs are not important for their 

function 

 To examine the biological significance of the photoreceptor-specific splicing 

program that is regulated by the Musashi proteins, we used CRISPR-Cas9 to delete the 

photoreceptor-specific exons from the Ttc8, Cc2d2a, Cep290, Cacna2d4, and Slc17a7 

genes in C57BL6/J mice. These exons were chosen because: (i) they are located in 

genes critical for vision; (ii) the exons are used specifically in photoreceptors where 

nearly all or nearly all of the transcripts include the exon; (iii) the exons with exception of 

the Slc17a7 exon are conserved in vertebrates. After validating the exon knockout mice 

(Figure 9A), we collected ERG traces from the exon knockout mice to determine if these 

exons were necessary for the function of rod and cone photoreceptor cells. Figure 9B 
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shows ERG traces from the Ttc8 exon knockout, Cep290 exon knockout, Cc2d2a exon 

knockout, Cacna2d4 exon knockout, and Slc17a7 exon knockout compared to wildtype 

(far left). No significant changes in retinal function were observed in any of exon 

knockout mice compared to control by five months of age (Figure 9B) suggesting that 

the inclusion of these photoreceptor-specific exon inclusion is not critical for rod and 

cone function.  
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DISCUSSION 

MSI1 and MSI2 are required for photoreceptor morphogenesis but not 

specification 

 Our data shows a clear requirement for MSI1 and MSI2 in photoreceptor cells. 

Double knockout of Msi1 and Msi2 in retinal progenitors results in complete loss of 

vision. Two lines of evidence demonstrate that this loss of vision is due to a defect in 

photoreceptor morphogenesis, rather than developmental defects due to impairment of 

the retinal progenitor cells. First, the specification of retinal progenitors to photoreceptor 

cells was not affected by loss of Musashi. The retina of the knockout mice had clearly 

defined outer nuclear layer. The rod photoreceptor nuclei retained their characteristic 

morphology, and the photoreceptor cells expressed cell type specific transcripts such as 

peripherin and PDE6β. Importantly, knockout of Msi1  and Msi2 in rod photoreceptors  

driven by Nrl-Cre caused loss of scotopic photoresponse. Thus the vision phenotype is 

not due to impairment of the early stages of retinal development, and is caused by a 

defect specific to photoreceptor cells.  

 Morphological examination by electron microscopy and immunofluorescence 

showed that the outer segment of the knockout photoreceptors is either missing, or is 

stunted and disorganized. The absence of outer segment is accompanied by a 

shortened axoneme.  In contrast, the connecting cilium has normal length and did not 

have obvious defects. Trafficking of PDE6 and peripherin through the connecting cilium 

also appears to be normal and the two proteins localize to the outer segment wherever 

one is present. Taken together our data demonstrates a requirement for Musashi in the 

morphogenesis and function of the photoreceptor outer segment that appears not to 
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affect transport along the connecting cilium. 

 

Normal photoreceptor function in photoreceptor-specific exon knockout mice  

 RT-PCR analysis of alternative splicing in the retina of Msi1 and  Msi2  knockout 

mice shoed that inclusion of photoreceptor specific exons in the mature transcripts is 

dependent on the Musashi proteins. Even though MSI1 and MSI2 regulate the splicing 

of the Ttc8, Cc2d2a, Cep290, Cacna2d4, and Slc17a7 pre-mRNAs, knockouts of the 

photoreceptor specific-exons in these genes revealed that these exons are not crucial 

for photoreceptor function. The retina of the exon knockout animals developed normally 

and no adverse phenotype was observed up to 5 months after birth. Thus, our data 

does not support a mechanisms by which alternative splicing mediates the phenotype of 

the Musashi knockouts in photoreceptor cells. This is a surprising result considering that 

four out of the exons are conserved and the genes that host them are critical for vision. 

Based on the currently available data we cannot completely rule out role for splicing in 

shaping the phenotype of the Musashi knockouts. Nevertheless, our results point that 

other mechanism need to be explored, particularly in the light of the documented role for 

Musashi in control mRNA translation.  

Cell proliferation and survival in the Musashi knockout retina 

 Morphological examination showed reduced cell number in the neuroblastoid 

layer at postnatal day 5 in the knockout animals. In the mature retina the outer nuclear 

layer did not reach the size of the corresponding layers in the wild type animals and 

progressively degenerated with age. The MSI1 protein was previously reported to be 

required for photoreceptor survival, but no loss of inner neurons was reported, likely due 
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to the presence of the paralogous MSI246. The reduction of the  inner nuclear layer  that 

we observe demonstrate that the Musashi proteins are required for the survival of inner 

retinal neurons in addition to photoreceptors.  Interestingly, the reduction of the 

neuroblastic layer in the Musashi knockout retina at postnatal day 5 was accompanied 

by increase in the number of proliferating cells that stained positive for PHH3 and Ki67. 

Caspase 3 staining did not show differences in the number of apoptotic cells between 

the wild type and the knockout retina at that stage.  These apparently contradictory 

observations can be explained with the role of the Musashi proteins in supporting stem 

cell renewal and proliferation through activation of the Notch pathway10,47–50. We 

propose that loss of Musashi in the developing retina reduces the numbers and 

proliferation rates of the neuronal precursors leading to delayed development of the 

neuroblastoid layer. 

 

Functional redundancy within the MSI RBP family  

 In vertebrates, the Musashi RBP family consists of two paralogues, MSI1 and 

MSI2, which have high degree of sequence identity, and have arisen from a gene 

duplication event16,51. The RNA binding domains of MSI1 and MSI2 have approximately 

90% sequence identity and recognize the same UAG sequence motif in vitro and in 

vivo52–55. The high degree of similarity suggest that the two proteins are likely to be 

functionally redundant when co-expressed in the same cells. Indeed, we observed only 

minor reductions in visual function after the loss of either MSI1 or MSI2 alone whereas 

the combined loss of MSI1 and MSI2 resulted in a complete loss of visual function 

(Figure 2).  Similarly, inclusion of photoreceptor specific exons is promoted by both 
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proteins, and the double knockout produces stronger effect on splicing than the 

knockouts of either Msi1 or Msi2.  The functional redundancy in photoreceptor cells that 

we observe is in agreement with previous reports of redundancy between MSI1 and 

MSI2 in other cell types18,19. 

 The redundancy between the two Musashi proteins in the retina appear to be 

partial. Loss of MSI1 produce more severe phenotype than loss of MSI2. Specifically, 

we observe an early visual defect in the Msi1 knockout mice, which is absent in the 

Msi2 knockouts. Loss of MSI1 also produced a stronger effect on splicing compared to 

MSI2. This partial redundancy may reflect intrinsic functional differences between the 

two proteins, or simply difference in their expression levels in photoreceptor cells. 

Interestingly, we noticed moderate but reproducible increased in the MSI2 protein levels 

after knocking out Msi1 (Supplementary Figure 2). Such mutual regulation can 

contribute to the redundancy between the two proteins and be a part of a homeostatic 

mechanism that maintains the overall Musashi protein levels. 

 Our work highlights roles for MSI1 and MSI2 in retinal development, retinal cell 

survival and photoreceptor morphogenesis. An interesting aspect of the function of the 

Musashi proteins in retina our their apparently mutually exclusive roles at different 

stages of development. At early stages of development MSI1 and MSI2 support the 

renewal and proliferation of retinal precursor cells. At late stages of retinal development 

and in the adult retina MSI1 and MSI2 are required for morphogenesis of the 

differentiated photoreceptor cells and survival of mature neurons. These roles are likely 

executed through translational control of Musashi targets, as knockouts of alternative 

exons regulated by the Musashi proteins did not recapitulate any of the aspects of the 
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phenotype of the Musashi knockout mice. Future studies will be aimed at determining 

the mechanism(s) by which the absence of Musashi causes a complete loss of vision in 

mice.   
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FIGURE 8 
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FIGURE 9  
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FIGURE LEGENDS 

 

Figure 1: Validation of the conditional knockout mouse models. 

A. Immunoblot of various tissues from wildtype mice and subsequently probing with 

anti-MSI1 and anti-MSI2 antibodies with anti- -tubulin antibody serving as a loading 

control.  

B. Validation of the ret-Msi1-/-, ret-Msi2-/-, and ret-Msi1-/-: Msi2-/- mice at PN10 by 

immunoblotting retinal lysates and subsequently probing with anti-MSI1 and anti-MSI2 

antibodies with anti- -tubulin antibody serving as a loading control.  

C. Immunofluorescence microscopy images of retinal sections from ret-Msi1-/-, ret-

Msi2-/-, and ret-Msi1-/-: Msi2-/- mice at PN10 probed with anti-MSI1 and anti-MSI2 

antibodies along with a DAPI counterstain. (IS: inner segment, ONL: outer nuclear layer, 

INL: inner nuclear layer, and GCL: ganglion cell layer). Scale bar = 50 m.  

 

Figure 2: The Musashi proteins are crucial for normal vision as shown by 

electroretinography. 

A. Representative scotopic and photopic electroretinograms (ERGs) from the ret-Msi1-/-

, ret-Msi2-/-, and ret-Msi1-/-: Msi2-/- mice at PN16. Scotopic ERGs were obtained after 

overnight dark adaptation using 0.151 cd-s/m2 flashes while photopic ERGs were 

obtained with 7.6 cd-s/m2 flashes under light-adapted conditions using a rod-saturating 

white background light (Scotopic scale bar: x-axis = 20ms, y-axis = 200 V; Photopic 

scale bar: x-axis = 20ms, y-axis = 20 V).  

B. Light stimulus intensity plot of the scotopic “a”-wave response from ret-Msi1-/- mice 
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with a maximum amplitude of 276 ± 10 V in control mice and maximum amplitude of 

154 ± 8 V in the ret-Msi1-/- mice (*=P-value < 0.05; **=P-value < 0.01; ***=P-value < 

0.001). 

C. Plot of the rod photoreceptor “a”-wave response from ret-Msi1-/- mice plotted against 

the age of the mouse during which the ERG was recorded.  

D. Light stimulus intensity plot of the scotopic “a”-wave response from ret-Msi2-/- mice 

with a maximum amplitude of 325 ± 15 V in control mice and maximum amplitude of 

278 ± 18 V in the ret-Msi2-/- mice.  

E. Plot of the rod photoreceptor “a”-wave response from ret-Msi2-/- mice plotted against 

the age of the mouse during which the ERG was recorded. All data is shown as the 

mean ± the SEM, and statistical analyses were carried out using the homoscedastic 

unpaired student’s t-test (*=P<0.05). 

 

Figure 3: Retinal cell death occurs in the absence of the Musashiproteins 

A. Left: Brightfield microscopic images of H&E stained retinal cross sections from the 

ret-Msi1-/-: Msi2-/- mice at PN5 (NBL: neuroblast layer and GCL: ganglion cell layer). 

Right: NBL spider plot showing the quantification of the NBL thickness (by neuroblast 

nuclear layers) at six regions from the inferior to superior retina in the ret-Msi1-/-: Msi2-/- 

mice at PN5 (*=P-value < 0.05; **=P-value < 0.01; ***=P-value < 0.001). 

B. Left: Brightfield microscopic images of H&E stained retinal cross sections from the 

ret-Msi1-/-: Msi2-/- mice at PN10 (ONL: outer nuclear layer, INL: inner nuclear layer, 

and GCL: ganglion cell layer). Right: ONL spider plot showing the quantification of the 

ONL thickness (by photoreceptor nuclear layers) at six regions from the inferior to 
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superior retina in the ret-Msi1-/-: Msi2-/- mice at PN10.  

C. Left: Brightfield microscopic images of H&E stained retinal cross sections from the 

ret-Msi1-/-: Msi2-/- mice at PN16 (ONL: outer nuclear layer, INL: inner nuclear layer, 

and GCL: ganglion cell layer). Right: ONL and INL spider plots showing the 

quantification of the ONL and INL thicknesses (by nuclear layers) at six regions from the 

inferior to superior retina in the ret-Msi1-/-: Msi2-/- mice at PN16.  

D. Left: Brightfield microscopic images of H&E stained retinal cross sections from the 

ret-Msi1-/-: Msi2-/- mice at PN180 (ONL: outer nuclear layer, INL: inner nuclear layer, 

and GCL: ganglion cell layer). Right: ONL and INL spider plots showing the 

quantification of the ONL and INL thicknesses (by nuclear layers) at six regions from the 

inferior to superior retina in the ret-Msi1-/-: Msi2-/- mice at PN180. All data is shown as 

the mean ± the SEM, and statistical analyses were carried out using the homoscedastic 

unpaired student’s t-test (*=P<0.05; ***=P<0.001). 

 

Figure 4: Changes in proliferation occur in the absence of MSI1 and MSI2 

A. Quantitation of PHH3+ cells in the central (left) and peripheral (right) regions of the 

retina in PN5 ret-Msi1-/-: Msi2-/- mice and littermate control mice.  

B. Quantitation of Ki67+ cells in the central (left) and peripheral (right) regions of the 

retina in PN5 ret-Msi1-/-: Msi2-/- mice and littermate control mice.  

C. Quantitation of CASP3+ cells in the central (left) and peripheral (right) regions of the 

retina in PN5 ret-Msi1-/-: Msi2-/- mice and littermate control mice.  

 

Figure 5: The Musashi proteins are required for proper OS development 
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A. Immunofluorescence microscopy images of retinal cross sections from the ret-Msi1-/-

: Msi2-/- mice at PN16 stained with anti-peripherin-2 antibody (PRPH2: OS marker) and 

peanut agglutinin (PNA: cone OS marker) along with a DAPI counterstain. (OS: outer 

segment and ONL: outer nuclear layer). Scale bar = 20 m.  

B. Immunofluorescence microscopy images of retinal cross sections from the ret-Msi1-/-

: Msi2-/- mice at PN16 stained with anti-phosphodiesterase-6  antibody (PDE6 : rod 

OS marker) and peanut agglutinin (PNA: cone OS marker) along with a DAPI 

counterstain. (OS: outer segment and ONL: outer nuclear layer). Scale bar = 20 m.  

 

Figure 6: The OS rarely develops in the absence of MSI1 and MSI2 

A. Low magnification transmission electron microscopy images of ultrathin retinal 

sections from ret-Msi1-/-: Msi2-/- mice at PN10 visualizing the boundary between the 

OS and IS showing a complete lack of typical outer segments in the absence of the 

Musashi proteins (OS: outer segment, IS: inner segment, and RPE: retinal pigment 

epithelium). Scale bar = 2 m.  

B. High magnification transmission electron microscopy images of ultrathin retinal 

sections from ret-Msi1-/-: Msi2-/- mice at PN10 visualizing the boundary between the 

OS and IS showing that the OS either does not form (far right) or is dysmorphic (middle) 

in the absence of the Musashi proteins (OS: outer segment, CC: connecting cilium, BB: 

basal body, RPE: retinal pigment epithelium, and IS: inner segment). Scale bar = 1 m.  

 

Figure 7: The Musashi proteins are crucial for photoreceptor axoneme 

development 
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A. Immunofluorescence microscopy images of retinal cross sections from the ret-Msi1-/-

: Msi2-/- mice at PN10 stained with anti-acetylated- -tubulin antibody (Ac-Tubulin: 

photoreceptor connecting cilium marker) and anti-male germ cell-associated kinase 

antibody (MAK: photoreceptor axoneme marker) along with a DAPI counterstain (RPE: 

retinal pigment epithelium, CC: connecting cilium, and ONL: outer nuclear layer).  

B. Scatter bar plot showing the distribution of length measurements for the 

photoreceptor axoneme of ret-Msi1-/-: Msi2-/- mice at PN10 as assessed by MAK 

staining.  

C. Scatter bar plot showing the distribution of length measurements for the 

photoreceptor connecting cilium of ret-Msi1-/-: Msi2-/- mice at PN10 as assessed by Ac-

tubulin staining. 

D. Scatter bar plot showing the distribution of length measurements for the 

photoreceptor connecting cilium of ret-Msi1-/-: Msi2-/- mice at PN10 as assessed by 

probing with anti-glutamylated tubulin antibody (Glut-tubulin: photoreceptor connecting 

cilium marker).  

 

Figure 8: The Musashi proteins regulate alternative splicing of their target 

transcripts 

A. Top: Diagram of the reverse transcriptase PCR splicing assay showing a 

photoreceptor-specific alternative exon flanked by two constitutive exons. Forward and 

reverse primers were designed to bind in the flanking constitutive exons upstream and 

downstream of the photoreceptor-specific exon respectively. When the alternative exon 

is included in the mature transcript, a longer PCR product is produced which migrates 
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more slowly during gel electrophoresis. Bottom: Diagram of the photoreceptor isoform of 

Ttc8 which has a photoreceptor-specific alternative exon called “2A.” Using a custom 

made antibody that recognizes the peptide encoded by Exon 2A, the photoreceptor 

specific isoform of Ttc8 can be detected by immunoblotting. Likewise, using a pan-Ttc8 

antibody which recognizes a Ttc8 constitutive peptide sequence, all isoforms of Ttc8 

can be detected. 

B. Reverse transcriptase PCR splicing assay using total RNA purified from retinal 

lysates of ret-Msi1-/-, ret-Msi2-/-, and ret-Msi1-/-: Msi2-/- mice. Ttc8, Cc2d2a, Cep290, 

and Prom1 are four cilia- and OS-related transcripts shown to have reduced 

photoreceptor-specific exon inclusion in the absence of MSI1 and MSI2. 

C. Immunoblot of retinal lysates from ret-Msi1-/-, ret-Msi2-/-, and ret-Msi1-/-: Msi2-/- 

mice. After probing with the pan-Ttc8 antibody (top), a change in the migration of the 

Ttc8 protein is observed in the absence of MSI1 and MSI2 suggesting that the peptide 

encoded by Exon 2A was not included. When probing with the Ttc8 E2A antibody 

(middle), a complete absence of the photoreceptor-specific isoform of Ttc8 is observed 

in the absence of MSI1 and MSI2.  

Figure 9: Exon knockout mice have normal photoreceptor function 

A. Validation of the exon knockout mice by reverse transcriptase PCR. 

B. Representative scotopic and photopic electroretinograms (ERGs) from wildtype, Ttc8 

exon knockout, Cep290 exon knockout, Cc2d2a exon knockout, Cacna2d4 exon 

knockout, and Slc17a7 exon knockout mouse models. Scotopic ERGs were obtained 

after dark adaptation while photopic ERGs were obtained under light-adapted conditions 

using a rod-saturating white background light. No changes in photoreceptor function are 
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observed compared to control.  
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SUPPLEMENTARY FIGURE 1 
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SUPPLEMENTARY FIGURE 2 
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SUPPLEMENTARY FIGURE 3 
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SUPPLEMENTARY FIGURE 4 
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Supplementary Figure 5 
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SUPPLEMENTARY FIGURE 6 
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SUPPLEMENTARY FIGURE 7 

 

 

 

  



www.manaraa.com

 

89 
 

SUPPLEMENTARY FIGURE LEGENDS 

 

Supplementary Figure 1: Disruption of the Musashi genes by Cre-LoxP 

recombination. 

To generate floxed mice for Msi1, a LoxP site was inserted immediately upstream of the 

Msi1 gene, and a second LoxP site was inserted in parallel with the first LoxP site in the 

intron between Exons 2 and 3 by homologous recombination. After CRE mediated 

recombination using either the Six3 Cre or Nrl Cre transgenic mice, the transcription 

start site, Exon 1, and Exon 2 of Msi1 are removed to result in a nonfunctional gene and 

deletion of the exons that encode part of the N-terminal RNA binding domains of MSI1. 

To generate floxed mice for Msi2, a LoxP site was inserted immediately upstream of the 

Msi2 gene, and a second LoxP site was inserted in parallel with the first LoxP site in the 

intron between Exons 4 and 5 by homologous recombination. After CRE mediated 

recombination using either the Six3 Cre or Nrl Cre transgenic mice, the transcription 

start site, Exon 1, Exon 2, Exon 3, and Exon 4 of Msi2 are removed to result in a 

nonfunctional gene and deletion of the exons that encode part of the N-terminal RNA 

binding domains of MSI2. 

 

Supplementary Figure 2: MSI2 is upregulated in the absence of MSI1. 

A. Immunoblotting of retinal lysates from ret-Msi1-/- mice and littermate controls at 

PN10 followed by probing with anti-MSI1 and anti-MSI2 antibodies with anti- -tubulin 

antibody serving as a loading control. MSI2 is upregulated in the absence of MSI1.  

B. Immunoblotting of retinal lysates from ret-Msi2-/- mice and littermate controls at 
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PN10 followed by probing with anti-MSI1 and anti-MSI2 antibodies with anti- -tubulin 

antibody serving as a loading control. MSI1 is not upregulated in the absence of MSI2.  

C. Quantification of MSI2 protein levels by immunoblotting retinal lysates obtained from 

Msi1-/- and control mice at PN10. Data is represented as the mean ± the SEM (*** : p-

value < 0.001 using the homoscedastic unpaired student’s t-test).  

D. Quantification of MSI1 protein levels by immunoblotting retinal lysates obtained from 

Msi2-/- and control mice at PN10. Data is represented as the mean ± the SEM (N.S. : 

Not statistically significant using the homoscedastic unpaired student’s t-test). 

 

Supplementary Figure 3: Validation of the rod-Msi1-/-: Msi2-/- mice by 

immunofluorescence microscopy. 

Immunofluorescence microscopy images of retinal cross sections from the rod-Msi1-/-: 

Msi2-/- and control mice stained with anti-MSI1 and anti-MSI2 antibodies along with 

peanut agglutinin (PNA: cone OS marker) and DAPI nuclear counterstain. (IS: inner 

segment, ONL: outer nuclear layer, INL: inner nuclear layer, and GCL: ganglion cell 

layer). Scale bar = 50 m.  

 

Supplementary Figure 4: Intrinsic expression of Musashi in rod photoreceptors is 

crucial for normal vision as shown by electroretinography. 

A. Representative scotopic and photopic electroretinograms (ERGs) from the rod-Msi1-

/-, rod-Msi2-/-, and rod-Msi1-/-: Msi2-/- mice at PN16. Scotopic ERGs were obtained 

after overnight dark adaptation using 0.151 cd-s/m2 flashes while photopic ERGs were 

obtained with 7.6 cd-s/m2 flashes under light-adapted conditions using a rod-saturating 
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white background light (Scotopic scale bar: x-axis = 10ms, y-axis = 100 V; Photopic 

scale bar: x-axis = 10ms, y-axis = 20 V).  

B. Light stimulus intensity plot of the scotopic “a”-wave response from rod-Msi1-/- mice. 

The data was fitted using regressions with a maximum amplitude of 319 ± 14 V in 

control mice and maximum amplitude of 201 ± 8 V in the rod-Msi1-/- mice (*=P-value 

< 0.05; **=P-value < 0.01; ***=P-value < 0.001).  

C. Plot of the rod photoreceptor “a”-wave response from rod-Msi1-/- mice plotted 

against the age of the mouse during which the ERG was recorded.  

D. Light stimulus intensity plot of the scotopic “a”-wave response from rod-Msi2-/- mice. 

The data was fitted using regressions with a maximum amplitude of 353 ± 7 V in 

control mice and maximum amplitude of 325 ± 16 V in the rod-Msi2-/- mice.  

E. Plot of the rod photoreceptor “a”-wave response from rod-Msi2-/- mice plotted 

against the age of the mouse during which the ERG was recorded. All data is shown as 

the mean ± the SEM, and statistical analyses were carried out using the homoscedastic 

unpaired student’s t-test (*=P<0.05). 

 

Supplementary Figure 5: Changes in proliferation occur in the absence of MSI1 

and MSI2 

A. Immunofluorescence microscopy of PHH3+ cells in the central (left) and peripheral 

(right) regions of the retina in PN5 ret-Msi1-/-: Msi2-/- mice and littermate control mice.  

B. Immunofluorescence microscopy of CASP3+ cells in the central (left) and peripheral 

(right) regions of the retina in PN5 ret-Msi1-/-: Msi2-/- mice and littermate control mice.  
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Supplementary Figure 6: Dysmorphic OS architecture in ret-Msi1-/-: Msi2-/- mice 

at PN10 as shown by immunofluorescence microscopy.  

A. Immunofluorescence microscopy images of retinal cross sections from the ret-Msi1-/-

: Msi2-/- mice at PN10 stained with anti-peripherin-2 antibody (PRPH2: OS marker) and 

peanut agglutinin (PNA: cone OS marker) along with a DAPI nuclear counterstain. (OS: 

outer segment and ONL: outer nuclear layer). Scale bar = 20 m.  

B. Immunofluorescence microscopy images of retinal cross sections from the ret-Msi1-/-

: Msi2-/- mice at PN10 stained with anti-phosphodiesterase-6  antibody (PDE6 : rod 

OS marker) and peanut agglutinin (PNA: cone OS marker) along with a DAPI nuclear 

counterstain. (OS: outer segment and ONL: outer nuclear layer). Scale bar = 20 m.  

Supplementary Figure 7: Normal OS architecture in ret-Msi1-/- and ret-Msi2-/- 

mice at PN16 as shown by immunofluorescence microscopy.  

A. Immunofluorescence microscopy images of retinal cross sections from the ret-Msi1-/- 

and ret-Msi2-/- mice at PN16 stained with anti-peripherin-2 antibody (PRPH2: OS 

marker) and peanut agglutinin (PNA: cone OS marker) along with a DAPI nuclear 

counterstain. (OS: outer segment and ONL: outer nuclear layer). Scale bar = 10 m. 
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ABSTRACT 

Retinitis pigmentosa (RP) is a debilitating blinding disease affecting over 1.5 

million people worldwide, but the mechanisms underlying this disease are not well 

understood. One of the common models used to study RP is the retinal degeneration-10 

(rd10) mouse, which has a mutation in Phosphodiesterase-6b (Pde6b) that causes a 

phenotype mimicking the human disease. In rd10 mice, photoreceptor cell death occurs 

with exposure to normal light conditions, but as demonstrated in this study, rearing 

these mice in dark preserves their retinal function. We found that inactivating rhodopsin 

signaling protected photoreceptors from degeneration suggesting that the pathway 

activated by this G-protein-coupled receptor is causing light-induced photoreceptor cell 

death in rd10 mice. However, inhibition of transducin signaling did not prevent the loss 

of photoreceptors in rd10 mice reared under normal light conditions implying that the 

degeneration caused by rhodopsin signaling is not mediated through its canonical G-

protein transducin. Inexplicably, loss of transducin in rd10 mice also led to 

photoreceptor cell death in darkness. Furthermore, we found that the rd10 mutation in 

Pde6b led to a reduction in the assembled PDE6αβγ2 complex, which was corroborated 

by our data showing mislocalization of the γ subunit. Based on our findings and 

previous studies, we propose a model where light activates a noncanonical pathway 

mediated by rhodopsin but independent of transducin that sensitizes cyclic nucleotide 

gated channels to cGMP and causes photoreceptor cell death. These results generate 

exciting possibilities for treatment of RP patients without affecting their vision or the 

canonical phototransduction cascade.  
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INTRODUCTION 

Retinitis pigmentosa (RP) (OMIM: 268000) is a debilitating genetic disorder 

characterized by night blindness and decreased visual fields which can progress to 

complete blindness and is often accompanied by severe photoreceptor cell loss (1). 

Mutations in more than 50 genes lead to various forms of this disease, and the two most 

commonly affected genes that lead to autosomal recessive RP are in the Usher 

syndrome type-2a (Ush2a) and Phosphodiesterase-6 (Pde6) genes with Pde6 

mutations accounting for 36,000 cases of RP (2). Current therapies available for 

hereditary RP symptoms are often insufficient and include vitamin A supplementation 

and wearing sunglasses (3,4). The biochemical mechanisms underlying photoreceptor 

cell death and subsequent vision loss in RP are not fully understood and elucidating 

these mechanisms will aid in the development of more personalized approaches for 

treating patients with this disease.  

One of the commonly used animal models of RP is the retinal degeneration-10 

(rd10) mouse where visual function is gradually lost and is accompanied by 

photoreceptor cell death (5). This phenotype closely mimics the human form of the 

disease. This mouse model has a missense mutation in the catalytic β subunit of the 

PDE6 holoenzyme (mutation denoted as PDE6βrd10/rd10 i.e. rd10 hereafter) (5). Rd10 

animals raised under normal light conditions in a vivarium with a 12hr light/12hr dark 

cycle show complete degeneration of the photoreceptor outer nuclear layer (ONL) by 

postnatal day 45 (PN45). Intriguingly, our studies show that rd10 mice reared in 

complete darkness show significant preservation of the ONL at PN45. Elucidating the 

mechanism behind this light-dependent photoreceptor cell death in the rd10 mouse may 
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lead to new insights into the human form of the disease in addition to development of 

better treatments for autosomal recessive RP.  

We hypothesized that the biochemical signaling cascade underlying sensation to 

light plays a key role in the light-dependent degeneration of photoreceptors in the rd10 

mouse model. The phototransduction cascade is fundamental to vision in all 

mammalian species and begins when the light-sensing G-protein-coupled receptor 

(GPCR) rhodopsin is activated by the absorption of a photon through its chromophore 

11-cis retinal. The subsequent conformational change in rhodopsin leads to activation of 

the heterotrimeric G-protein transducin. The α subunit of transducin then activates the 

effector enzyme of the phototransduction cascade PDE6 which leads to closing of cyclic 

nucleotide gated channels and hyperpolarization of the photoreceptor cell.  

After photon absorption, the chromophore 11-cis retinal attached to opsin is 

isomerized to all-trans retinal in photoreceptors (6). In a series of enzymatic reactions 

known as the visual cycle, 11-cis retinal is regenerated in the retinal pigment epithelium 

(RPE) and returned to photoreceptors to restore rhodopsin’s photosensitivity (6,7). The 

visual cycle begins with the reduction of all-trans retinal to all trans-retinol by NADPH 

dependent retinol dehydrogenase (6,8). All-trans retinol is then esterified in the RPE by 

lecithin retinol acyltransferase before being isomerohydrolyzed by the retinal pigment 

epithelium-specific protein of 65 kDa (RPE65), which catalyzes the production of 11-cis 

retinol (6,9). The alcohol 11-cis retinol is then oxidized back to the aldehyde 11-cis 

retinal by 11-cis retinol dehydrogenase to complete the cycle (6,8). Importantly, the 

RPE65 enzyme, amongst other critical visual cycle components, becomes necessary 

for the regeneration of rhodopsin’s photosensitivity, and without this enzyme, 
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photoreceptors are essentially rhodopsin-deficient (10).  

The absence of RPE65 (Rpe65-/-) prevents apoptosis of photoreceptors in mice 

exposed to high intensity light (15,000 lux) (11). These findings suggest a role for 

activated rhodopsin in photoreceptor degeneration in response to light exposure. We 

predicted that a similar signaling cascade is involved in photoreceptor cell death in rd10 

mice. We also wanted to know if this rhodopsin signaling requires transducin for 

apoptotic signaling in rd10 mouse photoreceptors.  

To test this hypothesis, mice lacking functional rod transducin-α alleles (Gnat1-/-) 

and mice lacking functional Rpe65 alleles (Rpe65-/-) were crossed with rd10 mice to 

generate Gnat1-/- rd10 and Rpe65-/- rd10 experimental mice (10,12). Ablation of 

RPE65 inactivates rhodopsin signaling since it is required for regeneration of 

rhodopsin’s chromophore 11-cis retinal (10). A rhodopsin knockout mouse could not be 

used because photoreceptor degeneration is observed, and outer segments fail to 

develop properly in this mouse model (13). 

After validating the Gnat1-/- rd10 and Rpe65-/- rd10 mice, we found that the lack 

of functional transducin failed to prevent light induced photoreceptor cell death in rd10 

mice, and to our surprise, led to degeneration in dark. Indeed, we found that removal of 

Rpe65 delays photoreceptor cell death in rd10 mice reared under normal light 

conditions. In addition, we found that the levels of the functional PDE6αβγ2 

heterotetramer were highly reduced. Lastly, we observed that the levels of each 

individual subunit of PDE6 were decreased in rd10 mice in addition to mislocalization of 

PDE6γ.  
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RESULTS 

Dark rearing rd10 mice delays photoreceptor cell death 

Mice homozygous for the rd10 mutation were raised from birth in either complete 

darkness or in a vivarium with a 12hr ~175 lux light : 12hr dark cycle. At postnatal day 

45 (PN45), whole eyes from these mice were collected along with C57BL6/J controls for 

histological analysis of the retinal outer nuclear layer (ONL) by hematoxylin and eosin 

(H&E) staining and immunofluorescence microscopy. Rd10 mice raised in normal cyclic 

light conditions experienced substantial photoreceptor degeneration (Fig. 1A & B). In 

contrast, there was significant preservation of the ONL in rd10 mice raised in complete 

darkness with approximately three to four layers of photoreceptor nuclei remaining at 

PN45 (Fig. 1A & B). These findings suggest that the rd10 mutation sensitizes 

photoreceptors to light and makes them susceptible to cell death. As shown in Fig. 1A, 

no substantial changes were observed in the retinal pigment epithelium (RPE) or inner 

retinal layers (INL: inner nuclear layer and GCL: ganglion cell layer) between rd10 mice 

raised in complete darkness and under normal light conditions. Overall, our findings 

show significant preservation of photoreceptors in dark reared rd10 animals. 

Retinal function is preserved in dark reared rd10 mice 

 We next sought to determine if the surviving photoreceptors are functional in dark 

reared rd10 mice in early adulthood at PN45. One of the commonly used methods for 

determination of photoreceptor function is electroretinography (ERG) where electrical 

activity originating from the neural retina is measured after exposure to a light stimulus. 

This technique allows for analysis of both rod and cone photoreceptor function. Indeed, 

the preservation of the ONL in rd10 mice raised in complete darkness correlated with 

increased photoreceptor function compared to rd10 mice raised under cyclic light 
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conditions (Fig. 2A-D). ERG traces of the cyclic-light reared rd10 mice revealed a 

complete absence of “a”- and “b”-waves compared to dark reared rd10 mice and age-

matched C57BL6/J controls under both scotopic and photopic conditions (Fig. 2A and 

B). Scotopic ERGs at varying light intensities confirmed the increased “b”-wave 

amplitude in dark reared rd10 mice compared to rd10 mice raised under cyclic light 

conditions which suggests that functional rod photoreceptor neurons are preserved in 

these mice (Fig. 2C). Similarly, photopic ERGs of the cyclic-light and dark reared rd10 

mice revealed a significantly increased “b”-wave amplitude in the dark reared rd10 mice 

implying that dark rearing preserves cone photoreceptors in these mice (Fig. 2D). When 

compared to age-matched C57BL6/J wildtype controls, we saw a reduction in both “a”-

wave and “b”-wave amplitudes in the dark reared rd10 mice under scotopic but not 

photopic testing conditions (Fig. 2A-D). This is likely due to the mutation in the rod-

specific PDE6β subunit which affects the levels of the rod-specific PDE6 holoenzyme 

(Fig. 5). 

Inactivating transducin does not prevent light-induced photoreceptor cell death in 

rd10 mice 

To determine if transducin was involved in the mediation of this light dependent 

photoreceptor cell death in the rd10 mouse, we crossed rd10 mice with the Gnat1-/- 

mouse model. The Gnat1-/- mouse lacks a functional rod transducin-α gene and yet 

experiences almost no photoreceptor degeneration due to the loss of transducin (12). 

Gnat1+/- rd10 X Gnat1+/- rd10 crosses were used to generate Gnat1-/- rd10 knockout 

mice and rd10 littermate control mice. The loss of rod transducin-α subunit (GαT1) was 

validated by western blot. GαT1 was absent in retinal extracts of Gnat1-/- rd10 double 
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knockout mice (Fig. 3A). The litters from the heterozygous crosses were raised in either 

cyclic light or complete darkness for 45 days. H&E stained retinal sections and 

immunofluorescence microscopy were used to analyze the retinal morphology. At 

PN45, photoreceptor cell death is seen in both the normal light reared Gnat1+/+ rd10 

and Gnat1-/- rd10 animals suggesting that transducin is not mediating the light 

dependent photoreceptor cell death (Fig. 3B & D). To our surprise, dark rearing Gnat1-/- 

rd10 mice failed to preserve photoreceptors and caused substantial photoreceptor 

degeneration with almost no ONL nuclei left at PN45 (Fig. 3C & E). Overall, these 

findings suggest that the light-dependent photoreceptor cell death observed in rd10 

mice occurs through a transducin-independent mechanism.  

Inactivating Rpe65 protects rd10 mice from light-induced photoreceptor cell 

death 

To determine if the activation of rhodopsin is mediating the light dependent 

photoreceptor cell death in rd10 animals, we inactivated rhodopsin by blocking the 

recycling of its chromophore 11-cis retinal with the use of the Rpe65-/- mouse model 

(10). 11-cis retinal is regenerated from all-trans retinal in part by RPE65, a retinol 

isomerase encoded by the Rpe65 gene (10). We crossed Rpe65-/- mice with rd10 mice 

to ultimately develop Rpe65-/- rd10 knockout mice and littermate control rd10 mice. We 

then validated these mice by immunofluorescence microscopy (Fig. 4A). As expected, 

RPE65 (green) was absent in the Rpe65-/- rd10 knockouts. Litters from heterozygous 

crosses were then raised in either normal light or complete darkness for 45 days before 

mice were sacrificed and whole eyes were collected for histological analysis. H&E and 

immunostaining of retinal sections were then imaged to analyze the retinal morphology. 
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At PN45, significant photoreceptor cell death is seen in the normal light reared 

Rpe65+/+ rd10 mice (Fig. 4B & D). Strikingly, however, standard light reared Rpe65-/- 

rd10 mice experience a slower rate of photoreceptor cell death with approximately three 

layers remaining at PN45 (Fig. 4B & D). When these mice were raised in complete 

darkness, photoreceptor nuclei were preserved to a similar extent between rd10 mice 

and Rpe65-/- rd10 mice as seen by similar ONL thickness (Fig. 4C & E). Altogether, 

these findings suggest that rhodopsin is signaling independently of transducin to 

mediate the light dependent photoreceptor cell death in the rd10 mouse.  

The functional PDE6 holoenzyme is reduced and mis-assembled 

We next wanted to test how the rd10 mutation in the β subunit of PDE6 affects 

the assembly of the holoenzyme. To this end, we immunoprecipitated the PDE6 

complex with ROS1 antibody, which specifically detects the assembled functional PDE6 

holoenzyme (14), in rd10 and C57BL6/J control retinal lysates at PN15 before the onset 

of photoreceptor degeneration (Fig. 5A). We then immunoblotted the fractions from the 

immunoprecipitation and probed with antibodies directed against PDE6α, PDE6β, and 

PDE6γ to check for the assembly of each subunit to the complex. Interestingly, in rd10 

mice, the levels of all three PDE6 subunits are considerably reduced in the bound 

(assembled) fraction compared to age-matched C57BL6/J controls suggesting that 

there is a decrease in the amount of assembled, functional PDE6 (Fig. 5A). 

Furthermore, significant amounts of the PDE6γ subunit are present in the unbound 

(unassembled) fraction in rd10 mice with no enrichment of PDE6γ in the bound 

(assembled) fraction as seen in the age-matched C57BL6/J controls (Fig. 5A). This data 



www.manaraa.com

 

102 
 

suggests that the PDE6 holoenzyme is mis-assembled, and there is a likely 

dysregulation of PDE6 if the γ subunit is unable to interact with the α and β subunits. 

The rd10 mutation alters levels of the PDE6 subunits 

 We next wanted to determine if the reduction in the assembled PDE6 

holoenzyme in rd10 mice was due to an instability of the complex or a reduction in the 

steady state protein levels of the individual subunits. Immunoblotting of retinal lysates 

from rd10 mice revealed that the levels of the PDE6β subunit are dramatically reduced 

prior to photoreceptor degeneration (Fig. 5B). The drastic loss in PDE6β levels is 

accompanied by a significant decrease in its cognate partner catalytic PDE6α subunit 

(Fig. 5B) implying that the ability for cGMP hydrolysis and consequently 

phototransduction efficiency is greatly reduced. Lastly, the levels of the inhibitory γ 

subunit are also decreased (Fig. 5B). The reduction in PDE6β levels was confirmed by 

immunofluorescence microscopy of retinal sections from the rd10 mice before the onset 

of photoreceptor degeneration (Fig. 5C). Overall, the rd10 mutation substantially affects 

the levels of each individual PDE6 subunit. 

PDE6γ but not PDE6α is mislocalized in both standard light and dark reared rd10 

mice 

After finding PDE6γ in the unassembled fraction of our pulldown experiment, we 

predicted that the PDE6 subunits may not be properly localized in rd10 mice. To test 

this hypothesis, we used immunofluorescence microscopy to examine retinal sections 

from normal light and dark reared rd10 mice for PDE6α, PDE6β, and PDE6γ localization 

before the onset of photoreceptor degeneration. Retinal sections were first stained with 

anti-PDE6β antibody, wheat germ agglutinin (WGA, a rod outer segment marker), and 
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counterstained with DAPI to see how the Pde6b mutation affects PDE6β localization. 

The reduction in PDE6β observed in Fig. 5B was confirmed by immunofluorescence 

microscopy (Fig. 5C), but its localization remained obscure (Fig. 5C). We found PDE6α 

to be properly localized to the outer segment in both normal light and dark reared rd10 

mice (Fig. 6A), and its levels were severely reduced in agreement with Fig. 5B. On the 

contrary, we observed substantial mislocalization of PDE6γ in both normal light and 

dark reared rd10 mice compared to the C57BL6/J control prior to the onset of 

photoreceptor degeneration (Fig. 6B). This data suggests that the rd10 mutation could 

alter the regulation of the PDE6 holoenzyme through mislocalization of the inhibitory 

PDE6γ subunit. 
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DISCUSSION 

Our studies reveal that dark-rearing prolongs survival and function of rod and 

cone photoreceptors in the rd10 mouse model (Fig. 1 & 2). We also examined the 

signaling pathways underlying the light-dependent photoreceptor cell death and the 

protection afforded by dark-rearing rd10 mice. Our findings show that the light-induced 

photoreceptor degeneration caused by the rd10 mutation is mediated by rhodopsin 

signaling (Fig. 4). However, the degeneration is independent of the canonical 

rhodopsin-transducin signaling cascade (Fig. 3). Intriguingly, the protection afforded by 

dark-rearing was lost when transducin signaling was abolished (Fig. 3). However, 

inhibition of rhodopsin signaling had no substantial effect on photoreceptor survival in 

dark-reared rd10 mice (Fig. 4). The rd10 mutation also caused a significant reduction in 

the levels of the functional PDE6αβγ2 heterotetramer in addition to a possible mis-

assembly of PDE6 and a reduction in each of the individual subunits (Fig. 5). 

Corroborating the mis-assembly of PDE6, PDE6γ but not PDE6α was mislocalized in 

both light and dark reared rd10 mice (Fig. 6). It has been shown that photoreceptor 

degeneration caused by mutations in PDE6 such as rd1 and rd10 can be genetically 

rescued by inactivating cyclic nucleotide-gated channels (15,16), but this approach has 

limited clinical applicability since the phototransduction cascade becomes arrested. Our 

study reveals that a rhodopsin mediated signaling event that is independent of 

transducin is causing cell death in rd10 mice. Novel therapies can be designed to target 

this pathway that modulates photoreceptor viability and thus treat patients with RP while 

not affecting their vision.  

The rd10 mouse model is a widely used mouse model of RP, which carries a 
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missense mutation in exon 13 of the Pde6b gene that leads to a substitution of arginine 

for cysteine (Arg560Cys) in the β subunit of the PDE6 holoenzyme (5). We found that 

this mutation causes a significant reduction in levels of the functional PDE6αβγ2 

holoenzyme in addition to a probable mis-assembly of PDE6. We found the majority of 

PDE6γ in the unassembled fraction of rd10 mice, and PDE6γ was mislocalized in the 

inner segments of rd10 mice. Similarly, we witnessed a reduction in all three subunits of 

PDE6 with PDE6α and PDE6β being most dramatically affected. These findings are 

similar to a recently published study showing that the rd10 mutation causes an 

instability of the PDE6 holoenzyme and a subsequent reduction in basal and maximal 

PDE6 activity (15). Interestingly, inactivation of cyclic nucleotide-gated channels 

protects rd10 mice from photoreceptor degeneration implicating Ca2+ ion influx as one 

factor driving cell death (15). Altogether, these findings point to altered regulation of the 

PDE6 holoenzyme as a cause of degeneration in rd10 mice. 

Interestingly, mice lacking the inhibitory PDE6γ subunit have dysregulation of the 

PDE6 holoenzyme and undergo rapid photoreceptor cell death even in the presence of 

PDE6αβ (17). This absence of PDE6γ leads to a paradoxical decrease in PDE6αβ 

activity, which causes high cGMP concentrations that likely keeps the cGMP-gated 

cation channels open continuously leading to an excessive cation influx and 

photoreceptor degeneration (17-18). Alternatively, it is possible that the rd10 mutation 

and subsequent PDE6γ mislocalization could lead to protein misfolding and aggregation 

that can overload the proteasome (19). This idea is supported by findings that show an 

overload of the proteasome is a common underlying mechanism in many forms of 

hereditary retinal disease, especially when the causative mutations are in 
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phototransduction genes (19). 

After inactivating rhodopsin signaling, we found that photoreceptors were 

protected in normal light conditions suggesting that rhodopsin is mediating light-

accelerated photoreceptor cell death in rd10 mice. Strikingly, our data also revealed that 

photoreceptor degeneration in rd10 mice raised under normal light conditions is 

independent of transducin-α which is rhodopsin’s canonical interactor. Altogether, these 

findings lead us to conclude that rhodopsin can signal through other Gi/o-family 

members besides transducin (T). This conclusion is supported by several other studies 

which have suggested that rhodopsin can couple to other members of the Gi/o family 

(20-24). For instance, one report showed that activated rhodopsin expressed in cell 

culture inhibited adenylyl cyclase activity through a Gi signaling cascade (20). Another 

study using primary retinal cell culture found that activation of rhodopsin in the plasma 

membrane altered the adenylate cyclase cascade to cause photoreceptor cell death 

(24). Yet another study found that Giβγ can replace Tβγ to restore the rhodopsin-

stimulated GTPase activity of Tα, and they also found that Giα exhibited rhodopsin-

stimulated GTPase activity when reconstituted with Giβγ or Tβγ (23). If rhodopsin’s 

noncanonical G-protein interactor can be identified in vivo, it may be possible to treat 

RP patients without affecting their vision or the canonical phototransduction cascade by 

targeting this noncanonical subunit. Remarkably, inhibitory drugs targeting G-protein 

subunits have already been developed and are showing strong efficacy in preclinical 

models (25). 

Likewise, transducin-independent signaling in photoreceptors is well-documented 

(26-29). For example, deletion of Grk1 led to photoreceptor degeneration, even in the 
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absence of transducin (26). A previous report also showed that photoreceptor cell death 

caused by bright light is independent of transducin (27). Likewise, transducin signaling 

was found to not play a direct role in the light-dependent dephosphorylation of GRK1 

(29). Another study found that activation of rhodopsin leads to phosphorylation of the 

insulin receptor and this is independent of transducin implying that other pathways can 

be activated through rhodopsin signaling (30). Interestingly, the insulin receptor has 

been shown to play a neuroprotective role when mice are exposed to light (31). The 

activated insulin receptor is thought to desensitize cyclic nucleotide-gated channels to 

the effects of cGMP (32). This would likely result in increased closure of these ion 

channels and less Ca2+ entry into the cell.  

When we compared our mechanistic findings to other studies of rd10 mice, we 

found that the signaling pathways underlying the photoreceptor degeneration observed 

in rd10 mice may be complex and multifactorial. For instance, one report found that 

inhibition of MCP-1 signaling increased photoreceptor viability in rd10 mice (33). 

Another study found that inhibition of ceramide mediated apoptotic signaling reduced 

photoreceptor cell death in rd10 mice (34). Interestingly, activation of adenosine 

monophosphate-activated protein kinase (AMPK) signaling protected photoreceptors in 

rd10 mice (35). Likewise, activation of Wnt signaling rescued photoreceptors in rd10 

mice from undergoing severe photoreceptor degeneration (36). A previous report also 

found that inhibition of p75NTR signaling reduced photoreceptor cell death in rd10 mice 

(37). Remarkably, inhibition of TNFα signaling also reduced photoreceptor cell death in 

rd10 mice (38). Inhibition of AMPA/Kainate signaling was found to increase 

photoreceptor survival in rd10 mice as well (39). Perhaps tying multiple pathways 
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together, one group observed that calcium overload and calpain activation occurred in 

rd10 mice before the onset of photoreceptor degeneration in addition to an increased 

permeability of lysosomal membranes (40). Lastly, Nakao et al. found that adenylyl 

cyclase caused photoreceptor cell death in rd10 mice (41). Altogether, these findings 

suggest that the mechanisms underlying neurodegeneration in rd10 mice are complex 

and multifactorial. 

Similarly, multiple studies have shown that various treatment regimens can 

mitigate the photoreceptor degeneration seen in the rd10 mouse model. For example, it 

has been shown that injection of pro-insulin or IGF1 has a neuroprotective effect in rd10 

mice (42-43). Inhibition of microglial phagocytosis by treatment with cRGD also 

increased photoreceptor survival in rd10 mice (44). In a similar manner, Granulocyte 

Colony-Stimulating Factor (G-CSF) and Erythropoietin delayed neurodegeneration in 

rd10 mice (45). Interestingly, treatment with either tamoxifen, tauroursodeoxycholic 

acid, carnosic acid, or Norgestrel reduced photoreceptor cell death in rd10 mice (46-49). 

Implicating oxidative stress as one factor driving photoreceptor cell death, treatment 

with antioxidants such as α tocopherol and ascorbic acid preserved photoreceptor 

function in rd10 mice (50). Suggestive of a dysregulation of iron, injection of transferrin 

protected rd10 mice from undergoing severe photoreceptor degeneration (51). This was 

complemented by another study which found that treating rd10 mice with zinc-

desferrioxamine had a neuroprotective effect (52). Lastly, Valosin-containing protein 

inhibitors and continuous environmental enrichment provided some degree of 

neuroprotection in rd10 mice (53-55).  

Surprisingly, our findings also reveal that transducin is critical for photoreceptor 
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survival in rd10 mice reared in complete darkness. It is important to note that the 

photoreceptor degeneration in the Gnat1-/- rd10 mice was not caused by the removal of 

the rod transducin-α gene since the Gnat1-/- mouse model exhibits minimal changes in 

retinal ONL thickness up to one year of age, and no mRNA is produced from the 

knockout gene (12). Likewise, this cell death is unlikely to be a gene dosage effect since 

Gnat1+/- rd10 mice undergo photoreceptor cell death at the same rate as Gnat1-/- rd10 

mice in light (unpublished data). The ONL thickness is also indistinguishable between 

Gnat1+/- rd10 and littermate rd10 mice when they are reared in the dark (unpublished 

data). Moreover, double and triple knockouts have been generated in previous studies 

without any noticeable effects on photoreceptor viability (26-27,56). Most notably, Fan 

et al. showed that the Rpe65-/- Grk1-/- Gnat1-/- triple knockout mouse model had 

increased photoreceptor survival compared to their Rpe65-/- Grk1-/- mouse model (26).  

Future experiments will be needed to address the mechanisms underlying the 

neurodegeneration observed in the dark reared Gnat1-/- rd10 mice. We suspect that 

some basal activity between transducin and PDE6 is required for photoreceptor survival 

to modulate the high intracellular Ca2+ levels observed in darkness (57). Interestingly, 

transducin is known to translocate to different subcellular locations of the photoreceptor 

cell depending on lighting conditions (58). In complete darkness, transducin is found in 

the outer segments of rod photoreceptors, but upon exposure to light, it translocates 

and diffuses throughout the rod photoreceptor (58). Its sequestration to the outer 

segment only in darkness may allow for some basal activity that modulates high 

intracellular Ca2+ levels observed in darkness (57). Similarly, arrestin and Grb14 

translocate from the inner segment in darkness to the outer segment upon light 
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exposure, and this process is dependent upon rhodopsin signaling yet independent of 

transducin signaling (59-60). Alternatively, in Gnat1-/- mice, intracellular Ca2+ 

concentrations do not undergo light-dependent reductions and prolonged exposure to 

high Ca2+ levels may become toxic to photoreceptors (61). Another study also showed 

that oxidative stress is increased in Gnat1-/- mice, and this could be responsible for the 

underlying neurodegeneration observed (62). Future experiments addressing the 

intracellular Ca2+ concentrations and oxidative stress in Gnat1-/- rd10 mice will provide 

more insight into the mechanisms underlying the neurodegeneration observed.  

In conclusion, this work shows for the first time that the signaling cascade 

responsible for the light-accelerated photoreceptor cell death in rd10 mice relies on the 

rhodopsin GPCR but is independent of its G-protein transducin. However, future studies 

will be necessary to identify the transducin-independent signaling pathway and whether 

or not rhodopsin is mediating light-induced photoreceptor cell death through an 

increased ion flux mechanism (15). It is tempting to speculate that if a protein 

downstream of rhodopsin can be identified and targeted for drug-mediated inhibition, 

patients with photoreceptor cell loss caused by light exposure can be treated while 

preserving their visual function. 
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MATERIALS AND METHODS 

Generation of mice and genotyping 

Rd10 mice were obtained from The Jackson Laboratory in the C57BL6/J 

background. These mice were confirmed to be homozygous for the rd10 allele and were 

bred with Gnat1-/- mice and Rpe65-/- mice that were kindly provided by Dr. Vladimir 

Kefalov from Washington University with the approval of Dr. Janis Lem from Tufts 

University. Gnat1+/-rd10 and Rpe65+/-rd10 strains were then separately crossed to 

generate Rpe65-/-rd10 and Gnat1-/-rd10 experimental mice, which were raised in 

rooms either in complete darkness or with a standard 12hr ~175 lux light : 12hr dark 

cycle. Littermate rd10 mice from these crosses were used as controls. The mouse 

models used for experimentation had no confounding rd1 and rd8 alleles (63-64). The 

genotype of offspring from breeding pairs was determined by polymerase chain reaction 

(PCR) amplification of genomic DNA derived from ear biopsies. The Rpe65 wildtype 

and null alleles were identified using the following primers (5’- TCA TGG TCT AGC CAT 

GTC TG -3’, 5’- CAC TTG TGT AGC GCC AAG TG -3’, and 5’- AAT CCC TAC CAG 

ATG CCA TC -3’) (65). The Gnat1 wildtype and null alleles were identified by using the 

following primers (5’- TAT CCA CCA GGA CGG GTA TTC -3’, 5’- GCG GAG TCA TTG 

AGC TGG TAT -3’, and 5’- GGG AAC TTC CTG ACT AGG GGA GG -3’) (66). All 

experiments were conducted with the approval of the West Virginia University 

Institutional Animal Care and Use Committee, and all work was performed with 

adherence to the principles set forth in the ARVO Statement for the Ethical Use of 

Animals in Ophthalmic and Vision Research which advocates minimum use of animals 

per study needed to obtain statistical significance. 



www.manaraa.com

 

112 
 

Electroretinography 

The ERG photoresponse was measured as previously described (67) using the 

UTAS BigShot LED Ganzfield System with UBA-4204 amplifier, and EM for Windows 

(LKC Technologies). After overnight dark adaptation, mice were placed under 

anesthesia using 1.5% isoflurane mixed with oxygen at 2 liters/minute. 

Electroretinograms from each eye were measured simultaneously from the corneal 

surface using electrodes after pupillary dilation with a 1:1 solution of 8% tropicamide : 

1.5% phenylephrine hydrochloride. The electrodes were referenced to a needle 

electrode placed on the scalp between the ears. Hydroxypropyl methylcellulose 

(Novartis Pharmaceuticals) was added to facilitate contact between electrodes and the 

cornea while maintaining the integrity of the cornea. The mouse’s body temperature 

was maintained at a temperature of 37°C using a regulated heating pad. Scotopic 

responses were obtained in complete darkness using single LED white light flashes of 

intensities varying from 2.45·10-4 cd-s/m2 to 2.4 cd-s/m2. Photopic responses were 

obtained with single LED white light flashes after light adaptation using 30 cd-s/m2 rod 

photoreceptor-saturating white light. The photoresponse vs. flash intensity data was 

modeled using the Naka-Rushton fit as described previously (68).   

Immunoblotting 

Immunoblotting was performed using a protocol adapted from our laboratory 

(67). Briefly, mice were sacrificed using CO2 followed by cervical dislocation, and retinas 

or whole eyes were frozen on dry ice for protein studies. Retinas or whole eyes were 

homogenized, and cells were lysed in PBS supplemented with protease inhibitor and 
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0.1% CHAPS (3-[(3-cholamidopropyl) dimethylammonio]-1-propanesulfonate) detergent 

by sonication. Cellular debris was cleared at 4oC by centrifugation for 10 minutes at 

12,000 X g. The samples were placed into Laemmli buffer (2% SDS, 10% glycerol, 5% 

2-mercaptoethanol, 0.002% bromophenol blue, and 62.5mM Tris-HCl pH 6.8) and 

boiled for 10 minutes before western blotting analysis. These lysates were loaded into 

standard SDS PAGE gels and fractionated by size. The proteins were transferred onto 

PVDF membranes (Millipore) and subsequently blocked for one hour with Odyssey 

Blocking Buffer (LICOR Biosciences) before incubation with primary antibody. The 

membranes were washed three times for five minutes in 0.1% Tween-20 in PBS, and 

secondary antibodies conjugated to infrared dye (Thermo-Fisher) were used to detect 

the primary antibody at 1:50,000 dilution. The membranes were then washed three 

times for five minutes in 0.1% Tween-20 in PBS and then scanned using an Odyssey 

Infrared Imaging System (LICOR Biosciences). 

Immunofluorescence Microscopy  

Immunofluorescence microscopy was performed as previously described in our 

laboratory (67). Briefly, mice were sacrificed using CO2 before secondary cervical 

dislocation. After enucleation of the eyes, the lens and cornea were removed. Eyes 

were immediately fixed by incubation in 4% paraformaldehyde in PBS for 1.5 hours. 

Eyes were then incubated in 20% sucrose in PBS overnight after washing them three 

times in PBS for five minutes each. After placing the eyes in a 1:1 solution of OCT:20% 

sucrose in PBS for two hours, they were flash frozen in OCT (VWR). A Leica CM1850 

cryostat was used to cryosection eyes at 16μm thickness and collect retinal cross-
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sections. The sections were placed on Superfrost Plus slides (Fisher Scientific). Slides 

were then permeabilized with PBST (0.1% Triton X-100 in PBS) and incubated for 30 

minutes in a blocking buffer containing 0.05% sodium azide, 0.5% Triton X-100, and 

10% goat serum in PBS. Retinal sections were incubated with primary antibody 

overnight at 4°C followed by three 5 minute washes with PBST before incubation with 

secondary antibody and DAPI. After three five minute washes in PBST and coverslip 

placement, a Nikon C2 Confocal Microscope was used to image slides. 

Retinal histology of the rd10 mice 

Knockout and control mice were euthanized, and whole eyes were enucleated 

before marking the superior pole with a red tissue dye (Marketlab), and eyes were then 

fixed for 48 hours using Alcohol Z-fixative (Excalibur Pathology). Samples were then 

shipped to Excalibur Pathology for tissue processing and preparation of hematoxylin 

and eosin (H&E) stained slides. Images of stained slides were collected on a Nikon C2 

Microscope using Elements software (Nikon). Images were processed using ImageJ 

software (National Institutes of Health). 

PDE6 assembly assay by ROS1 pulldown 

 After euthanasia, retinas were isolated and frozen on dry ice before 

homogenization by sonication in co-immunoprecipitation buffer (20mM Tris-HCl pH 8, 

137mM NaCl, 2mM EDTA, 0.1% Triton X-100, 0.02% sodium azide, protease inhibitor 

cocktail, and 10mM iodoacetamide). Samples were centrifuged at 13,000 X g for 10min 

at 4oC to remove debris. Lysates were then precleared by tumble incubation with 

protein A/G beads for 30 minutes at 4oC before centrifugation at 13,000 X g for 10min. 

A total fraction was collected before tumble incubating samples with ROS1 monoclonal 



www.manaraa.com

 

115 
 

antibody for four hours at 4oC. Samples were centrifuged at 13,000 X g for 10 minutes 

at 4oC. The supernatant was tumble incubated with protein A/G beads for 60 minutes at 

4oC before centrifugation at 13,000 X g for 30 seconds. After collecting the unbound 

fraction, bead pellets were washed three times with washing buffer (10mM Tris-HCl pH 

7.4, 150mM NaCl, 1mM EDTA, 0.1% Triton X-100, 0.02% sodium azide, and protease 

inhibitor cocktail). Laemmli buffer (2% SDS, 10% glycerol, 5% 2-mercaptoethanol, 

0.002% bromophenol blue, and 62.5mM Tris-HCl pH 6.8) was then added to the beads 

and samples were boiled for 5 minutes, lightly vortexed and subjected to centrifugation 

at 13,000 X g for 30 seconds. Samples from the total, unbound, and bound fractions 

were then size fractionated on SDS-PAGE gels before immunoblotting as described 

earlier. 

Antibodies 

Throughout this work, the following primary antibodies were used at 1:1000 

dilutions: rabbit anti-PDE6γ (Thermo-Fisher), rabbit anti-PDE6β (Thermo-Fisher), rabbit 

anti-PDE6α (Thermo-Fisher), anti-assembled PDE6 (i.e. ROS1) was a kind gift from Dr. 

Ted Wensel from Baylor College and Rick Cote from University of New Hampshire, 

rabbit anti-rod-Transducin-α (Santa Cruz), rabbit anti-RPE65 was a kind gift from Dr. 

Michael Redmond from the National Eye Institute, mouse anti-GAPDH (Fitzgerald), 

rhodamine peanut agglutinin (PNA: cone OS sheath marker, Vector laboratories), and 

fluorescein wheat germ agglutinin (WGA: rod OS sheath marker, Vector laboratories). 
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LEGENDS: 

Figure 1: Dark rearing delays photoreceptor cell death in rd10 animals. A. Brightfield 

images of hematoxylin and eosin (H&E) stained retinal cross sections from the PN45 

rd10 mice reared under standard light conditions and in darkness (OS: outer segment, 

IS: inner segment, ONL: outer nuclear layer, INL: inner nuclear layer, and GCL: 

ganglion cell layer). Scale bar = 30μm. B. Spider diagram showing the quantification of 

the ONL thickness at six regions from the inferior to superior retina in the light and dark 

reared rd10 mice at PN45 (n=3). Data is shown as the mean ± the SEM with statistical 

significance calculated using the two tailed homoscedastic unpaired student’s t-test 

(*=P<0.05; **=P<0.01). 

Figure 2: Preservation of retinal function in dark reared rd10 mice. A. Representative 

scotopic (0.151 cd-s/m2) electroretinograms (ERGs) of the standard light (red) and dark 

(green) reared rd10 mice at PN45 along with age-matched C57BL6/J controls (black) 

after overnight dark adaptation (Scotopic scale bar: x-axis = 20ms, y-axis = 200μV). B. 

Representative photopic (7.6 cd-s/m2) ERGs of the standard light (red) and dark (green) 

reared rd10 mice along with age-matched C57BL6/J controls (black) under light-

adapted conditions using a 30 cd-s/m2 rod-saturating white background light at PN45 

(Photopic scale bar: x-axis = 20ms, y-axis = 40μV). C. Light stimulus intensity plot of the 

scotopic “b”-wave response from the standard light and dark reared rd10 mice along 

with age-matched C57BL6/J controls at PN45 (n=3). The dose response relationship 

was modeled using the Naka-Rushton fit with maximum amplitudes determined to be 

833±64μV, 479±31μV, and 50±5μV for the wildtype, dark and light reared rd10 mice 

respectively. D. Light stimulus intensity plot of the photopic “b”-wave response from the 
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dark and standard light reared rd10 mice along with age-matched C57BL6/J controls at 

PN45 (n=3). The dose response relationship was modeled using the Naka-Rushton fit 

with maximum amplitudes determined to be 153±20μV, 129±19μV, and 22±4μV for the 

wildtype, dark and light reared rd10 mice respectively. Data is shown as the mean ± the 

SEM with statistical significance calculated using the two tailed homoscedastic unpaired 

student’s t-test (*=P<0.05; **=P<0.01; ***=P<0.001). 

Figure 3: Light-dependent photoreceptor cell death in rd10 mice is not mediated by 

transducin signaling. A. Validation of the Gnat1-/- rd10 mice by immunoblotting retinal 

lysates and subsequently probing with an antibody against rod transducin-α (GαT1). 

Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) serves as a loading control. 

Molecular weight in kilodaltons (kDa) is indicated on the right. B. H&E stained retinal 

cross sections from the standard light reared Gnat1-/- rd10 mice along with littermate 

rd10 controls at PN45. (OS: outer segment, IS: inner segment, ONL: outer nuclear 

layer, INL: inner nuclear layer, and GCL: ganglion cell layer). Scale bar = 30μm. C. H&E 

stained retinal cross sections from the dark reared Gnat1-/- rd10 mice along with 

littermate rd10 controls at PN45. Scale bar = 30μm. D. Spider plot showing the 

quantification of the photoreceptor nuclei at six regions from the inferior to superior 

retina in the standard light reared Gnat1-/- rd10 mice and littermate rd10 controls at 

PN45. E. Quantification of photoreceptor nuclei at six regions from the inferior to 

superior retina in the dark reared Gnat1-/- rd10 mice and littermate rd10 controls at 

PN45. Data is shown as the mean ± the SEM (n=3, two tailed homoscedastic unpaired 

student’s t-test; *=P<0.05; **=P<0.01; N.S. = Not Significant). 
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Figure 4: Inactivating Rpe65 protects rd10 mice from light-induced photoreceptor cell 

death. A. Validation of the Rpe65-/- rd10 mice at PN15 before the onset of 

photoreceptor degeneration by immunofluorescence microscopy of retinal cross 

sections stained with RPE65 antibody (Green), peanut agglutinin (PNA: cone 

photoreceptor OS marker, Red), and DAPI nuclear counterstain (Blue). Scale bar = 

20μm. B. and C. H&E stained retinal cross sections from the standard light reared (B.) 

and dark-reared (C.) Rpe65-/- rd10 mice along with littermate rd10 controls at PN45. 

(OS: outer segment, IS: inner segment, ONL: outer nuclear layer, INL: inner nuclear 

layer, and GCL: ganglion cell layer). Scale bar = 30μm. D. ONL spider plot showing the 

quantification of the ONL thickness at six regions from the inferior to superior retina in 

the light reared Rpe65-/- rd10 mice and littermate rd10 controls at PN45. E. ONL spider 

plot from the inferior to superior retina in the dark reared Rpe65-/- rd10 mice and 

littermate rd10 controls at PN45. Data is shown as the mean ± the SEM (n=3, two tailed 

homoscedastic unpaired student’s t-test, *=P<0.05; **=P<0.01; N.S. = Not Significant). 

Figure 5: The rd10 mutation causes a reduction in the levels of the functional PDE6 

complex and its individual subunits. A. PN15 C57BL6/J (left) and rd10 (right) retinal 

lysates were used for immunoprecipitation by incubation with ROS1 antibody which 

recognizes the assembled PDE6αβγ2 complex. Following immunoprecipitation, total (T), 

unbound (U), and bound (B) fractions were subjected to size separation by gel 

electrophoresis and then electroblotted onto PVDF membranes before probing with 

antibodies directed against either PDE6α, PDE6β, or PDE6γ to check for the assembly 

of each subunit to the complex. B. Immunoblot of retinal lysates from PN15 C57BL6/J 

wildtype control mice (n=3) and rd10 mice (n=3) probed with antibodies directed against 
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PDE6α, PDE6β, PDE6γ, and Glyceraldehyde 3-phosphate dehydrogenase (GAPDH: 

loading control). C. Immunofluorescence microscopy images of retinal cross sections 

from C57BL6/J wildtype control mice and light and dark reared rd10 mice after probing 

with an antibody directed against PDE6β (red), wheat germ agglutinin (WGA: rod 

photoreceptor OS marker shown in green), and DAPI (blue) counterstain. Scale bar = 

10μm. 

Figure 6: PDE6γ but not PDE6α is mislocalized in both light and dark reared rd10 mice. 

A. Immunofluorescence microscopy images of retinal cross sections from the light and 

dark reared rd10 mice along with a C57BL6/J wildtype control after probing with 

antibody directed against PDE6α (red), wheat germ agglutinin (WGA: rod photoreceptor 

OS marker shown in green), and DAPI (blue) nuclear counterstain. Scale bar = 10μm. 

B. Immunofluorescence microscopy images of retinal cross sections from the light and 

dark reared rd10 mice along with a C57BL6/J wildtype control after probing with 

antibody against PDE6γ (red), WGA (green), and DAPI (blue). Scale bar = 10μm. 
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ABBREVIATIONS 

 

1. B: Bound 

2. CHAPS: 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate 

3. DAPI: 4′,6-diamidino-2-phenylindole 

4. ERG: Electroretinography 

5. GAPDH: Glyceraldehyde 3-phosphate dehydrogenase 

6. GCL: Ganglion cell layer 

7. Gnat1: Rod transducin-α gene 

8. GPCR: G-protein-coupled receptor  

9. H&E: Hemoxylin and eosin stain 

10. INL: Inner nuclear layer 

11. IS: Inner segment 

12. OCT: Optimal cutting temperature compound 

13. ONL: Outer nuclear layer 

14. OS: Outer segment 

15. PBS: Phosphate buffered saline 

16. PBST: Phosphate buffered saline supplemented with 0.1% Triton X-100 

17. PCR: Polymerase chain reaction 

18. PDE6: Phosphodiesterase-6 

19. PDE6β: Phosphodiesterase-6 β subunit 

20. PN45: Postnatal day 45  

21. PNA: Peanut agglutinin  

22. rd10: Retinal degeneration-10  
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23. RP: Retinitis pigmentosa 

24. RPE: Retinal pigment epithelium 

25. Rpe65: Gene encoding the retinal pigment epithelium-specific protein of 65 kDa 

(RPE65) 

26. SEM: Standard error of the mean 

27. T: Total 

28. U: Unbound 

29. Ush2a: Usher syndrome type-2a  

30. WGA: Wheat germ agglutinin 
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Figure 2 
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Figure 3 
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Figure 4 

 

  



www.manaraa.com

 

139 
 

Figure 5 
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Figure 6 
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Chapter 4: Discussion and Future Directions 

 Previous reports have observed high expression of MSI in the retina1-4. However, 

the biological significance of this expression and the function of MSI in the retina 

remains largely unknown. To gain mechanistic insight into the function of the MSI RBPs 

in vivo, we generated knockout mouse models using Cre-LoxP recombination to knock 

out either Msi1, Msi2, or both Msi1 and Msi2 in the retina and ventral forebrain using the 

Six3 Cre transgene. We found that there is cross-regulation between the MSI proteins in 

the retina and that MSI1 and MSI2 can partially compensate for the other’s function in 

photoreceptors. Furthermore, the MSI proteins are essential for vision and retinal cell 

survival. Interestingly, we found that the MSI proteins are necessary for normal 

proliferation of RPCs. The MSI proteins also appear to be regulating OS and axoneme 

development in photoreceptors. Lastly, we show that the MSI proteins regulate 

alternative splicing of their target transcripts in murine photoreceptor cells, but the effect 

seen in ret-Msi1-/-: Msi2-/- mice may be additive due to the altered splicing of all MSI’s 

target pre-mRNAs or due to a mechanism other than splicing.  

 The MSI RBP family consists of two paralogues in vertebrates, MSI1 and MSI2, 

which have a high degree of sequence identity, and this is thought to have arisen from a 

gene duplication event5-6. Intriguingly, the RNA binding domains of MSI1 and MSI2 have 

approximately 90% sequence identity raising the possibility that they can bind similar 

and/or identical RNA targets5. This information suggests that MSI1 and MSI2 have the 

potential to partially compensate for the loss of the other. Indeed, we observed only 

minor reductions in visual function after the loss of either MSI1 or MSI2 alone whereas 

the combined loss of MSI1 and MSI2 resulted in a complete loss of visual function, and 

this agrees with other studies which have reported a functional redundancy between 
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MSI1 and MSI27-8. Moreover, autoregulation and cross-regulation amongst RBPs have 

emerged as a common mechanism to modulate protein expression at the 

posttranscriptional level9-10. However, cross-regulation between MSI1 and MSI2 has not 

been previously reported in the retina, and our studies suggest that MSI1 negatively 

cross-regulates the other member of its RBP family, MSI2. 

 The MSI RBPs appear to be crucial for not only photoreceptor cell survival but 

also inner retinal neuron survival as well. Our findings agree with a previously published 

study which showed that MSI1 is required for photoreceptor survival2. The limiting factor 

of this study is that it focused on the biological significance of retinal MSI1 expression 

alone but not MSI2 expression. It is likely that the effects reported by Susaski et. al are 

not as severe due to the functional redundancy between MSI1 and MSI2 which would 

account for the intermediate phenotype that they observed.  

Our data also revealed changes in RPC proliferation in the absence of MSI 

(Figure 4). Surprisingly, we found that the number of PHH3-positive and KI67-positive 

RPCs was increased in the absence of MSI1 and MSI2 even though the number of NBL 

nuclei in the retina was less than the littermate control. We suspect that MSI1 and MSI2 

are regulating differentiation of RPCs, which would account for the increase in 

proliferation marker staining in the absence of MSI if RPC differentiation was delayed or 

impeded. Moreover, we found putative MSI binding sites on several mRNAs necessary 

for proper retinal cell differentiation including Nrl, Nr2e3, Crx, and Pax6 raising the 

possibility that the MSI RBP family may be regulating transcription factors necessary for 

retinal cell development at the posttranscriptional level. Likewise, another study has 

reported that the MSI RBP family may be necessary for the proper differentiation of 
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inner root sheath cells in the hair follicle11.  

In agreement with our hypothesis, the MSI proteins appear to be essential for OS 

and axoneme development. In the absence of MSI, dysmorphic OS developed, and the 

axoneme stained in a punctate manner with very little elongation as seen in the 

littermate control. This is in agreement with Susaki et. al who reported alterations in OS 

structure in the absence of MSI12. We suspect that the MSI proteins are post-

transcriptionally regulating RNA targets that are important for the OS structure. More 

work will be required to find which RNA targets the MSI proteins are binding and directly 

regulating. Strikingly, however, the CC of photoreceptors in ret-Msi1-/-: Msi2-/- mice 

seems to be normal as shown by transmission electron microscopy in addition to normal 

CC length measurements and normal trafficking of the phototransduction protein PDE6 

through the CC and into the dysmorphic OS. After observing that the MSI proteins are 

regulating the photoreceptor-specific splicing of several cilia-related transcripts in vivo, 

we suspect that the alternative exons within these transcripts are not necessary for 

proper CC formation. 

 We observed that the MSI proteins regulate a unique alternative splicing program 

in murine photoreceptors. Strikingly, we found a common theme where the MSI proteins 

are required for the inclusion of photoreceptor-specific exons into multiple cilia- and OS-

related transcripts in photoreceptors. These include mRNAs from the Bbs8, Cc2d2a, 

Cep290, and Prom1 genes which encode ubiquitously expressed proteins necessary for 

ciliogenesis, yet their mRNAs are spliced uniquely in photoreceptors. This 

photoreceptor-specific splicing occurs through a unique mechanism which we 

delineated in our previous work1. Using Bbs8 as a model RNA target for MSI, we 
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showed by RNA pulldown that MSI binds to the downstream intron of the photoreceptor-

specific Exon 2A1. This downstream binding is necessary for Bbs8 Exon 2A inclusion 

which we showed through the use of wildtype and mutated reporter minigenes1. Using 

the reporter minigene with the wildtype intronic sequence downstream of Exon 2A, we 

found that MSI1 promoted inclusion of Exon 2A into the mature transcript1. On the 

contrary, when the MSI binding sites in the intron downstream of Exon 2A were 

mutated, Exon 2A inclusion was hindered substantially1. Intriguingly, our data is in 

agreement with Cuadrado et al. who reported that MSI may regulate the splicing of Tau 

mRNA12.  

Even though MSI regulates the splicing of the Bbs8, Cc2d2a, Cep290, 

Cacna2d4, and Slc17a7 pre-mRNAs, knockout of these photoreceptor specific-exons in 

C57BL6/J mice revealed that these exons are not crucial for photoreceptor function. 

This suggests that the phenotype witnessed in ret-Msi1-/-: Msi2-/- mice is either 

cumulative due to the altered splicing of all of MSI’s target transcripts together or that 

another mechanism is responsible for the photoreceptor degeneration. Most notably, 

the MSI RBP family is highly concentrated in the inner segment, yet the importance of 

this cytoplasmic localization in photoreceptors remains largely unknown. 

These findings provide a strong groundwork for future studies. Most notably, the 

cumulative list of RNA targets that are regulated by the MSI proteins is still unknown in 

the vertebrate retina. Through CLIP-sequencing analysis, the in vivo RNA targets of the 

MSI proteins can be identified by cross linking the RNA to the MSI proteins via 

ultraviolet light exposure before pulling down the MSI proteins and sequencing the 

bound RNA13. This will provide insight into not only which RNAs the MSI proteins are 
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regulating but also what location on the RNA these proteins are bound to possibly 

providing clues to their function in the vertebrate retina13.  

This experiment will also provide insight into mechanisms by which the MSI 

proteins regulate RPC proliferation and photoreceptor survival and may reveal an 

essential role for MSI protein expression in retinal development. It will be interesting to 

see which RNAs are regulated by the MSI proteins that are involved in the modulation 

of RPC proliferation. Previous studies have shown that the MSI proteins can activate 

the Wnt and Notch pathways providing a possible explanation for the alterations that we 

observed in RPC proliferation14,15. In addition, the expression of the MSI proteins 

appear to be essential for not only photoreceptor survival but also inner retinal neuron 

survival as well. This is supported by other studies which have confirmed that MSI has 

important antiapoptotic functions2,16,17.  

The findings obtained in rd10 mice have important implications for the future 

treatment of patients. We discovered that rhodopsin can activate signaling pathways 

independently of transducin that ultimately lead to light-induced photoreceptor cell death 

in rd10 mice. Not surprisingly, the next major scientific hurdle that needs to be 

addressed is identifying the non-canonical G-protein that couples to rhodopsin in vivo. 

Future experiments will be needed to identify this novel signaling interactor of rhodopsin 

perhaps through coimmunoprecipitation and mass spectrometry. Crosslinking assays 

can also be conducted to detect transient or weak interactions. If this non-canonical G-

protein can be identified, it may be possible to treat retinitis pigmentosa patients 

exhibiting light-induced photoreceptor cell death without affecting their vision or the 

phototransduction cascade. Remarkably, inhibitory drugs targeting G-protein subunits 
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have already been developed and are showing excellent efficacy in preclinical models.  

In conclusion, we have shown that the Musashi proteins are essential 

posttranscriptional regulators of photoreceptor morphogenesis and alternative splicing 

and that mechanisms underlying photoreceptor cell death in retinitis pigmentosa may 

involve pathological signaling due to light exposure. Future experiments will be needed 

to address the mechanisms underlying Musashi’s functions which we have found to be 

critical for photoreceptor survival and to address the signaling pathways that underlie 

transducin-independent rhodopsin signaling in vertebrate photoreceptors.   
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